Neural networks for oil spill detection using ERS-SAR data

被引:228
作者
Del Frate, F [1 ]
Petrocchi, A
Lichtenegger, J
Calabresi, G
机构
[1] Univ Roma Tor Vergata, I-00133 Rome, Italy
[2] ESA, Vitrociset, ESRIN, I-00044 Frascati, Italy
[3] ESA, ESRIN, I-00044 Frascati, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2000年 / 38卷 / 05期
关键词
ERS-synthetic aperture radar (SAR); neural networks; oil spill detection;
D O I
10.1109/36.868885
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A neural network approach for semi-automatic detection of oil spills in European remote sensing satellite-synthetic aperture radar (ERS-SAR) imagery is presented, The network input is a vector containing the values of a set of features characterizing an oil spill candidate. The classification performance of the algorithm has been evaluated on a data set containing verified examples of oil spill and look-alike, A direct analysis of the information content of the calculated features has been also carried out through an extended pruning procedure of the net.
引用
收藏
页码:2282 / 2287
页数:6
相关论文
共 9 条
[1]   RADAR SIGNATURES OF OIL FILMS FLOATING ON THE SEA-SURFACE AND THE MARANGONI EFFECT [J].
ALPERS, W ;
HUHNERFUSS, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1988, 93 (C4) :3642-3648
[2]  
BISHOP CM, 1995, NEURAL NETWORKS PATT, P374
[3]  
DAWSON MS, 1994, A FUNG MICROWAVE SCA
[4]  
Hsu S.Y., 1992, REMOTE SENS REV, V6, P319, DOI [10.1080/02757259209532159, DOI 10.1080/02757259209532159]
[5]  
Jollife I., 1986, Principal Component Analysis
[6]  
LIPPMANN RP, 1987, IEEE ASSP MAGAZI APR, P4
[7]  
Rumelhart D.E., 1987, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, P318
[8]   SAR detection and characterization of sea surface slicks [J].
Trivero, P ;
Fiscella, B ;
Gomez, F ;
Pavese, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (03) :543-548
[9]  
Zell A., 1995, Technical Report