Base-flipping dynamics in a DNA hairpin processing reaction

被引:31
作者
Bischerour, Julien [1 ]
Chalmers, Ronald [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
基金
英国惠康基金;
关键词
D O I
10.1093/nar/gkm186
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many enzymes that repair or modify bases in double-stranded DNA gain access to their substrates by base flipping. Although crystal structures provide stunning snap shots, biochemical approaches addressing the dynamics have proven difficult, particularly in complicated multi-step reactions. Here, we use protein-DNA crosslinking and potassium permanganate reactivity to explore the base-flipping step in Tn5 transposition. We present a model to suggest that base flipping is driven by a combination of factors including DNA bending and the intrusion of a probe residue. The forces are postulated to act early in the reaction to create a state of tension, relieved by base flipping after cleavage of the first strand of DNA at the transposon end. Elimination of the probe residue retards the kinetics of nicking and reduces base flipping by 50%. Unexpectedly, the probe residue is even more important during the hairpin resolution step. Overall, base flipping is pivotal to the hairpin processing reaction because it performs two opposite but closely related functions. On one hand it disrupts the double helix, providing the necessary strand separation and steric freedom. While on the other, transposase appears to position the second DNA strand in the active site for cleavage using the flipped base as a handle.
引用
收藏
页码:2584 / 2595
页数:12
相关论文
共 39 条
[1]   Determinants for hairpin formation in Tn10 transposition [J].
Allingham, JS ;
Wardle, SJ ;
Haniford, DB .
EMBO JOURNAL, 2001, 20 (11) :2931-2942
[2]   Mutational analysis of the base flipping event found in Tn5 transposition [J].
Ason, B ;
Reznikoff, WS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) :11284-11291
[3]   Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA [J].
Banerjee, A ;
Yang, W ;
Karplus, M ;
Verdine, GL .
NATURE, 2005, 434 (7033) :612-618
[4]   Hairpin formation in Tn5 transposition [J].
Bhasin, A ;
Goryshin, IY ;
Reznikoff, WS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37021-37029
[5]   THE 2 SINGLE-STRAND CLEAVAGES AT EACH END OF TN10 OCCUR IN A SPECIFIC ORDER DURING TRANSPOSITION [J].
BOLLAND, S ;
KLECKNER, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7814-7818
[6]   Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
NATURE, 2000, 407 (6802) :340-348
[7]   Complete nucleotide sequence of Tn10 [J].
Chalmers, R ;
Sewitz, S ;
Lipkow, K ;
Crellin, P .
JOURNAL OF BACTERIOLOGY, 2000, 182 (10) :2970-2972
[8]   Controller design for an overhead crane system with uncertainty [J].
Cheng, CC ;
Chen, CY .
CONTROL ENGINEERING PRACTICE, 1996, 4 (05) :645-653
[9]   DNA looping and catalysis:: The IHF-folded arm of Tn10 promotes conformational changes and hairpin resolution [J].
Crellin, P ;
Sewitz, S ;
Chalmers, R .
MOLECULAR CELL, 2004, 13 (04) :537-547
[10]   Three-dimensional structure of the Tn5 synaptic complex transposition intermediate [J].
Davies, DR ;
Goryshin, IY ;
Reznikoff, WS ;
Rayment, I .
SCIENCE, 2000, 289 (5476) :77-85