A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System

被引:420
作者
Lefsky, Michael A. [1 ]
机构
[1] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
关键词
BIOMASS; STAND; LIDAR;
D O I
10.1029/2010GL043622
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The value of lidar derives from its ability to map ecosystem vertical structure which can be used to estimate aboveground carbon storage. Spaceborne lidar sensors collect data along transects and gain value for the global change science community when combined with data sources that have complete horizontal coverage. Data sources and methods for this type of analysis require evaluation. In this work we use image segmentation of 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) data to produce a global map of 4.4 million forest patches. Where a Geoscience Laser Altimeter System (GLAS) transect intersects a patch, its height is calculated from the GLAS observations directly. Regression analysis is then used to estimate the heights of those patches without GLAS observations. Regression goodness-of-fit statistics indicate moderately strong relationships for predicting the 90th percentile patch height, with a mean RMSE of 5.9 m and mean correlation (R-2) of 0.67. Citation: Lefsky, M. A. (2010), A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System, Geophys. Res. Lett., 37, L15401, doi: 10.1029/2010GL043622.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance [J].
Abshire, JB ;
Sun, XL ;
Riris, H ;
Sirota, JM ;
McGarry, JF ;
Palm, S ;
Yi, DH ;
Liiva, P .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (21) :1-4
[2]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[3]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677
[4]   A PHYSICALLY-BASED TRANSFORMATION OF THEMATIC MAPPER DATA - THE TM TASSELED CAP [J].
CRIST, EP ;
CICONE, RC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984, 22 (03) :256-263
[5]  
*DEF IM GMBH, 2007, DEV 7 US GUID
[6]   Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest [J].
Drake, JB ;
Dubayah, RO ;
Knox, RG ;
Clark, DB ;
Blair, JB .
REMOTE SENSING OF ENVIRONMENT, 2002, 81 (2-3) :378-392
[7]  
DUBAYAH R, 2008, EOS T AGU S, V89
[8]  
Hansen MC, 2003, EARTH INTERACT, V7
[9]   STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE [J].
HARALICK, RM .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :786-804
[10]   Global biomass mapping for an improved understanding of the CO2 balance -: the Earth observation mission Carbon-3D [J].
Hese, S ;
Lucht, W ;
Schmullius, C ;
Barnsley, M ;
Dubayah, R ;
Knorr, D ;
Neumann, K ;
Riedel, T ;
Schröter, K .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (01) :94-104