Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2

被引:137
作者
Liu, SH
Milne, GT
Kuremsky, JG
Fink, GR
Leppla, SH [1 ]
机构
[1] MIT, Dept Biol, Cambridge, MA 02142 USA
[2] MIT, Whitehead Inst Biomed Res, Cambridge, MA 02139 USA
[3] NIAID, Microbial Pathogenesis Sect, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1128/MCB.24.21.9487-9497.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diphthamide, a posttranslational modification of translation elongation factor 2 that is conserved in all eukaryotes and archaebacteria and is the target of diphtheria toxin, is formed in yeast by the actions of five proteins, Dph1 to -5, and a still unidentified amidating enzyme. Dph2 and Dph5 were previously identified. Here, we report the identification of the remaining three yeast proteins (Dph1, -3, and -4) and show that all five Dph proteins have either functional (Dph1, -2, -3, and -5) or sequence (Dph4) homologs in mammals. We propose a unified nomenclature for these proteins (e.g., HsDph1 to -5 for the human proteins) and their genes based on the yeast nomenclature. We show that Dph1 and Dph2 are homologous in sequence but functionally independent. The human tumor suppressor gene OVCA1, previously identified as homologous to yeast DPH2, is shown to actually be HsDPH1. We show that HsDPH3 is the previously described human diphtheria toxin and Pseudomonas exotoxin A sensitivity required gene 1 and that DPH4 encodes a CSL zinc finger-containing Dnaj-like protein. Other features of these genes are also discussed. The physiological function of diphthamide and the basis of its ubiquity remain a mystery, but evidence is presented that Dph1 to -3 function in vivo as a protein complex in multiple cellular processes.
引用
收藏
页码:9487 / 9497
页数:11
相关论文
共 32 条
[1]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[2]  
Bruening W, 1999, CANCER RES, V59, P4973
[3]   LARGE-SCALE ANALYSIS OF GENE-EXPRESSION, PROTEIN LOCALIZATION, AND GENE DISRUPTION SACCHAROMYCES-CEREVISIAE [J].
BURNS, N ;
GRIMWADE, B ;
ROSSMACDONALD, PB ;
CHOI, EY ;
FINBERG, K ;
ROEDER, GS ;
SNYDER, M .
GENES & DEVELOPMENT, 1994, 8 (09) :1087-1105
[4]  
CARROLL SF, 1988, METHOD ENZYMOL, V165, P68
[5]   Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis [J].
Chen, CM ;
Behringer, RR .
GENES & DEVELOPMENT, 2004, 18 (03) :320-332
[6]   DIPHTHERIA TOXIN-RESISTANT MUTANTS OF SACCHAROMYCES-CEREVISIAE [J].
CHEN, JYC ;
BODLEY, JW ;
LIVINGSTON, DM .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (12) :3357-3360
[7]  
CHEN JYC, 1988, J BIOL CHEM, V263, P11692
[8]   Functional aspects of protein mono-ADP-ribosylation [J].
Corda, D ;
Di Girolamo, M .
EMBO JOURNAL, 2003, 22 (09) :1953-1958
[9]  
DUNLOP PC, 1983, J BIOL CHEM, V258, P4754
[10]   Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification [J].
Fichtner, L ;
Jablonowski, D ;
Schierhorn, A ;
Kitamoto, HK ;
Stark, MJR ;
Schaffrath, R .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1297-1307