Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana

被引:72
作者
Ding, Yezhang [1 ]
Dommel, Matthew [1 ]
Mou, Zhonglin [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, POB 110700, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
NPR1; abscisic acid; salicylic acid; plant immunity; protein degradation; Arabidopsis thaliana; SYSTEMIC ACQUIRED-RESISTANCE; SALICYLIC-ACID; SIGNAL-TRANSDUCTION; NEGATIVE REGULATION; GENE-EXPRESSION; PLANT IMMUNITY; RECEPTOR; PROTEIN; TOMATO; MUTANT;
D O I
10.1111/tpj.13141
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR3/NPR4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 56 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Non-Host Defense Response in a Novel Arabidopsis-Xanthomonas citri subsp citri Pathosystem [J].
An, Chuanfu ;
Mou, Zhonglin .
PLOS ONE, 2012, 7 (01)
[3]   Global switches and fine-tuning -: ABA modulates plant pathogen defense [J].
Asselbergh, Bob ;
De Vleesschauwer, David ;
Hofte, Monica .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2008, 21 (06) :709-719
[4]   Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis [J].
Asselbergh, Bob ;
Curvers, Katrien ;
Franca, Soraya C. ;
Audenaert, Kris ;
Vuylsteke, Marnik ;
Van Breusegem, Frank ;
Hoefte, Monica .
PLANT PHYSIOLOGY, 2007, 144 (04) :1863-1877
[5]   The roles of ABA in plant-pathogen interactions [J].
Cao, Feng Yi ;
Yoshioka, Keiko ;
Desveaux, Darrell .
JOURNAL OF PLANT RESEARCH, 2011, 124 (04) :489-499
[6]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[7]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[8]   Uncoupling PR gene expression from NPR1 and bacterial resistance:: Characterization of the dominant Arabidopsis cpr6-1 mutant [J].
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1998, 10 (04) :557-569
[9]   Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease [J].
de Torres-Zabala, Marta ;
Truman, William ;
Bennett, Mark H. ;
Lafforgue, Guillaume ;
Mansfield, John W. ;
Rodriguez Egea, Pedro ;
Bogre, Laszlo ;
Grant, Murray .
EMBO JOURNAL, 2007, 26 (05) :1434-1443
[10]   Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains [J].
DeFraia, Christopher T. ;
Wang, Yongsheng ;
Yao, Jiqiang ;
Mou, Zhonglin .
BMC PLANT BIOLOGY, 2013, 13