Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972-2006

被引:24
作者
Muskett, Reginald R. [1 ]
Lingle, Craig S. [1 ]
Sauber, Jeanne M. [2 ]
Post, Austin S.
Tangborn, Wendell V. [3 ]
Rabus, Bernhard T. [4 ]
Echelmeyer, Keith A. [1 ]
机构
[1] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20902 USA
[3] HyMet Inc, Vashon, WA 98070 USA
[4] MacDonald Dettwiler, Richmond, BC V6V 2J3, Canada
基金
美国国家科学基金会;
关键词
RADAR TOPOGRAPHY MISSION; SUBGLACIAL WATER-SYSTEM; MALASPINA GLACIER; SHUTTLE RADAR; SAR DATA; SURGE; ASTER; ICE; STORAGE; MODELS;
D O I
10.3189/002214309788608750
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972-95 was 0.9 +/- 0.1 m a(-1); (2) this rate accelerated to 3.0 +/- 0.7 m a(-1) during 1995-2000; and (3) during 2000-03 the lowering rate was 1.5 +/- 0.4 m a(-1). From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191 +/- 17 km(3), which was an area-average surface elevation lowering of 1.7 +/- 0.2 m a(-1). From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal-englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.
引用
收藏
页码:316 / 326
页数:11
相关论文
共 57 条
[1]  
Abrams M., 2002, ASTER Users Handbook, Version 2
[2]  
Alford D., 1967, Journal of Glaciology, V6, P495, DOI DOI 10.3189/S0022143000019717
[3]  
[Anonymous], 1969, J GLACIOL, V8, P3
[4]   Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods [J].
Arendt, A. ;
Echelmeyer, K. ;
Harrison, W. ;
Lingle, C. ;
Zirnheld, S. ;
Valentine, V. ;
Ritchie, B. ;
Druckenmiller, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2006, 111 (F3)
[5]   Rapid wastage of Alaska glaciers and their contribution to rising sea level [J].
Arendt, AA ;
Echelmeyer, KA ;
Harrison, WD ;
Lingle, CS ;
Valentine, VB .
SCIENCE, 2002, 297 (5580) :382-386
[6]  
Bader H., 1954, J GLACIOL, V2, P319, DOI [10.3189/s0022143000025144, 10.3189/S0022143000025144, DOI 10.3189/S0022143000025144]
[7]   Response of glacier basal motion to transient water storage [J].
Bartholomaus, Timothy C. ;
Anderson, Robert S. ;
Anderson, Suzanne P. .
NATURE GEOSCIENCE, 2008, 1 (01) :33-37
[8]   Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska [J].
Beedle, M. J. ;
Dyurgerov, M. ;
Tangborn, W. ;
Khalsa, S. J. S. ;
Helm, C. ;
Raup, B. ;
Armstrong, R. ;
Barry, R. G. .
CRYOSPHERE, 2008, 2 (01) :33-51
[9]   Airborne surface profiling of glaciers: A case-study in Alaska [J].
Echelmeyer, KA ;
Harrison, WD ;
Larsen, CF ;
Sapiano, J ;
Mitchell, JE ;
DeMallie, J ;
Rabus, B ;
Adalgeirsdottir, G ;
Sombardier, L .
JOURNAL OF GLACIOLOGY, 1996, 42 (142) :538-547
[10]  
EINEDER M, 2001, P INT GEOSC REM SENS, V2, P748