Developments in general and syndromic surveillance for small area health data

被引:6
作者
Lawson, A [1 ]
Clark, A [1 ]
Rodeiro, CLV [1 ]
机构
[1] Univ S Carolina, Norman J Arnold Sch Publ Hlth, Columbia, SC 29208 USA
基金
美国国家卫生研究院;
关键词
syndromic; surveillance; statistics; small area; health;
D O I
10.1080/0266476042000270568
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we examine a range of issues related to the analysis of health surveillance data when it is spatially-referenced The importance of considering alarm functions derived from likelihood or Bayesian models is stressed. In addition, we focus on some new developments in predictive distribution residuals in the analysis.
引用
收藏
页码:951 / 966
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 2000, C&H TEXT STAT SCI
[2]  
[Anonymous], MONITORING HLTH POPU
[3]  
[Anonymous], 1999, SIGKDD Explorations
[4]   BAYESIAN IMAGE-RESTORATION, WITH 2 APPLICATIONS IN SPATIAL STATISTICS [J].
BESAG, J ;
YORK, J ;
MOLLIE, A .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) :1-20
[5]  
DEMARE J, 1980, ANN PROBAB, V8, P841
[6]   Computing Bayes factors by combining simulation and asymptotic approximations [J].
DiCiccio, TJ ;
Kass, RE ;
Raftery, A ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :903-915
[7]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[8]  
Efron B., 1994, INTRO BOOTSTRAP, DOI DOI 10.1201/9780429246593
[9]  
FRISEN M, 1991, BIOMETRIKA, V78, P271
[10]  
GENKIN A, 2004, UNPUB LARGE SCALE BA