The Tap42-protein phosphatase type 2A catalytic subunit complex is required for cell cycle-dependent distribution of actin in yeast

被引:30
作者
Wang, HM [1 ]
Jian, Y [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pharmacol, Pittsburgh, PA 15213 USA
关键词
D O I
10.1128/MCB.23.9.3116-3125.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, the Tor proteins mediate a wide spectrum of growth-related cellular processes in response to nutrients. The pleiotropic role of the Tor proteins is mediated, at least in part, by type 2A protein phosphatases (PP2A) and 2A-like protein phosphatases. Tor-mediated signaling activity promotes the interaction of phosphatase-interacting protein Tap42 with PP2A and 2A-like protein phosphatases. The distinct complexes formed between Tap42 and different phosphatases mediate various cellular events and modulate phosphorylation levels of many downstream factors in the Tor pathway in a Tor-dependent and rapamycin-sensitive manner. In this study, we demonstrate that the interaction between Tap42 and the catalytic subunits of PP2A (PP2Ac) is required for cell cycle-dependent distribution of actin. We show that mutations in PP2Ac and Tap42 that perturb the interaction cause random distribution of actin during the cell cycle and that overexpression of the Rho2 GTPase suppresses the actin defects associated with the mutants. Our findings suggest that the Tap42-PP2Ac complex regulates the actin cytoskeleton via a Rho GTPase-dependent mechanism. In addition, we provide evidence that PP2A activity plays a negative role in controlling the actin cytoskeleton and, possibly, in regulation of the G(2)/M transition of the cell cycle.
引用
收藏
页码:3116 / 3125
页数:10
相关论文
共 53 条
[1]  
[Anonymous], METHOD ENZYMOL
[2]  
[Anonymous], METHOD ENZYMOL
[3]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42
[4]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[5]   The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae [J].
Berset, C ;
Trachsel, H ;
Altmann, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4264-4269
[6]   The 14-3-3 proteins positively regulate rapamycin-sensitive signaling [J].
Bertram, PG ;
Zeng, CB ;
Thorson, J ;
Shaw, AS ;
Zheng, XFS .
CURRENT BIOLOGY, 1998, 8 (23) :1259-1267
[7]   Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases [J].
Bertram, PG ;
Choi, JH ;
Carvalho, J ;
Ai, WD ;
Zeng, CB ;
Chan, TF ;
Zheng, XFS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35727-35733
[8]   Cell wall integrity modulates RHO1 activity via the exchange factor ROM2 [J].
Bickle, M ;
Delley, PA ;
Schmidt, A ;
Hall, MN .
EMBO JOURNAL, 1998, 17 (08) :2235-2245
[9]   DOMINANT MISSENSE MUTATIONS IN A NOVEL YEAST PROTEIN RELATED TO MAMMALIAN PHOSPHATIDYLINOSITOL 3-KINASE AND VPS34 ABROGATE RAPAMYCIN CYTOTOXICITY [J].
CAFFERKEY, R ;
YOUNG, PR ;
MCLAUGHLIN, MM ;
BERGSMA, DJ ;
KOLTIN, Y ;
SATHE, GM ;
FAUCETTE, L ;
ENG, WK ;
JOHNSON, RK ;
LIVI, GP .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6012-6023
[10]   The TOR signaling cascade regulates gene expression in response to nutrients [J].
Cardenas, ME ;
Cutler, NS ;
Lorenz, MC ;
Di Como, CJ ;
Heitman, J .
GENES & DEVELOPMENT, 1999, 13 (24) :3271-3279