RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol

被引:183
作者
Dinh, TP
Kathuria, S
Piomelli, D
机构
[1] Univ Calif Irvine, Dept Pharmacol, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92717 USA
关键词
D O I
10.1124/mol.104.002071
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) is produced by neurons and other cells in a stimulus-dependent manner and undergoes rapid biological inactivation through transport into cells and catalytic hydrolysis. The enzymatic pathways responsible for 2-AG degradation are only partially understood. We have shown previously that overexpression of monoacylglycerol lipase (MGL), a cytosolic serine hydrolase that cleaves 1- and 2-monoacylglycerols to fatty acid and glycerol, reduces stimulus-dependent 2-AG accumulation in primary cultures of rat brain neurons. We report here that RNA interference-mediated silencing of MGL expression greatly enhances 2-AG accumulation in HeLa cells. After stimulation with the calcium ionophore ionomycin, 2-AG levels in MGL-silenced cells were comparable with those found in cells in which 2-AG degradation had been blocked using methyl arachidonyl fluorophosphonate, a nonselective inhibitor of 2-AG hydrolysis. The results indicate that MGL plays an important role in the degradation of endogenous 2-AG in intact HeLa cells. Furthermore, immunodepletion experiments show that MGL accounts for at least 50% of the total 2-AG-hydrolyzing activity in soluble fractions of rat brain, suggesting that this enzyme also contributes to 2-AG deactivation in the central nervous system.
引用
收藏
页码:1260 / 1264
页数:5
相关论文
共 23 条
[1]   Functional role of high-affinity anandamide transport, as revealed by selective inhibition [J].
Beltramo, M ;
Stella, N ;
Calignano, A ;
Lin, SY ;
Makriyannis, A ;
Piomelli, D .
SCIENCE, 1997, 277 (5329) :1094-1097
[2]   Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol [J].
Beltramo, M ;
Piomelli, D .
NEUROREPORT, 2000, 11 (06) :1231-1235
[3]   Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase [J].
Cravatt, BF ;
Demarest, K ;
Patricelli, MP ;
Bracey, MH ;
Giang, DK ;
Martin, BR ;
Lichtman, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9371-9376
[4]   Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system [J].
Cravatt, BF ;
Lichtman, AH .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (04) :469-475
[5]   Brain monoglyceride lipase participating in endocannabinoid inactivation [J].
Dinh, TP ;
Carpenter, D ;
Leslie, FM ;
Freund, TF ;
Katona, I ;
Sensi, SL ;
Kathuria, S ;
Piomelli, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10819-10824
[6]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[7]   Role of endogenous cannabinoids in synaptic signaling [J].
Freund, TF ;
Katona, I ;
Piomelli, D .
PHYSIOLOGICAL REVIEWS, 2003, 83 (03) :1017-1066
[8]   Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry [J].
Giuffrida, A ;
de Fonseca, FR ;
Piomelli, D .
ANALYTICAL BIOCHEMISTRY, 2000, 280 (01) :87-93
[9]   Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand [J].
Goparaju, SK ;
Ueda, N ;
Yamaguchi, H ;
Yamamoto, S .
FEBS LETTERS, 1998, 422 (01) :69-73
[10]   Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors [J].
Goparaju, SK ;
Ueda, N ;
Taniguchi, K ;
Yamamoto, S .
BIOCHEMICAL PHARMACOLOGY, 1999, 57 (04) :417-423