Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation

被引:821
作者
Xu, L
Eu, JP
Meissner, G [1 ]
Stamler, JS
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Physiol, Chapel Hill, NC 27599 USA
[3] Duke Univ, Med Ctr, Howard Hughes Med Inst, Dept Med,Div Pulm, Durham, NC 27710 USA
[4] Duke Univ, Med Ctr, Howard Hughes Med Inst, Dept Med,Div Cardiovasc Med, Durham, NC 27710 USA
[5] Duke Univ, Med Ctr, Howard Hughes Med Inst, Dept Cell Biol, Durham, NC 27710 USA
关键词
D O I
10.1126/science.279.5348.234
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several ion channels are reportedly redox responsive, but the molecular basis for the changes in activity is not known. The mechanism of nitric oxide action on the cardiac calcium release channel (ryanodine receptor) (CRC) in canines was explored. This tetrameric channel contains similar to 84 free thiols and is S-nitrosylated in vivo. S-Nitrosylation of up to 12 sites (3 per CRC subunit) led to progressive channel activation that was reversed by denitrosylation. In contrast, oxidation of 20 to 24 thiols per CRC (5 or 6 per subunit) had no effect on channel function. Oxidation of additional thiols (or of another class of thiols) produced irreversible activation. The CRC thus appears to be regulated by poly-S-nitrosylation (multiple covalent attachments), whereas oxidation can lead to loss of control. These results reveal that ion channels can differentiate nitrosative from oxidative signals and indicate that: the CRC is regulated by posttranslational chemical modification(s) of sulfurs.
引用
收藏
页码:234 / 237
页数:4
相关论文
共 55 条
[1]   HEAVY-METALS INDUCE RAPID CALCIUM RELEASE FROM SARCOPLASMIC-RETICULUM VESICLES ISOLATED FROM SKELETAL-MUSCLE [J].
ABRAMSON, JJ ;
TRIMM, JL ;
WEDEN, L ;
SALAMA, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (06) :1526-1530
[2]  
ABRAMSON JJ, 1988, MOL CELL BIOCHEM, V82, P81
[3]   CRITICAL SULFHYDRYLS REGULATE CALCIUM RELEASE FROM SARCOPLASMIC-RETICULUM [J].
ABRAMSON, JJ ;
SALAMA, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1989, 21 (02) :283-294
[4]   Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation [J].
Aghdasi, B ;
Reid, MB ;
Hamilton, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25462-25467
[5]   FORMATION AND REACTIONS OF SULFENIC ACIDS IN PROTEINS [J].
ALLISON, WS .
ACCOUNTS OF CHEMICAL RESEARCH, 1976, 9 (08) :293-299
[6]   HG-2+-INDUCED CONTRACTURE IN MECHANICALLY SKINNED FIBERS OF FROG SKELETAL-MUSCLE [J].
AOKI, T ;
OBA, T ;
HOTTA, K .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1985, 63 (09) :1070-1074
[7]   NO+, NO(CENTER-DOT), AND NO- DONATION BY S-NITROSOTHIOLS - IMPLICATIONS FOR REGULATION OF PHYSIOLOGICAL FUNCTIONS BY S-NITROSYLATION AND ACCELERATION OF DISULFIDE FORMATION [J].
ARNELLE, DR ;
STAMLER, JS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 318 (02) :279-285
[8]   NITRIC-OXIDE DIRECTLY ACTIVATES CALCIUM-DEPENDENT POTASSIUM CHANNELS IN VASCULAR SMOOTH-MUSCLE [J].
BOLOTINA, VM ;
NAJIBI, S ;
PALACINO, JJ ;
PAGANO, PJ ;
COHEN, RA .
NATURE, 1994, 368 (6474) :850-853
[9]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752
[10]   Redox modulation of L-type calcium channels in ferret ventricular myocytes - Dual mechanism regulation by nitric oxide and S-nitrosothiols [J].
Campbell, DL ;
Stamler, JS ;
Strauss, HC .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (04) :277-293