Parametric robust inference about regression parameters for the correlation coefficient

被引:11
作者
Chen, Chien-Hung
Tsou, Tsung-Shan [1 ]
机构
[1] Natl Cent Univ, Inst Stat, Chungli, Taiwan
[2] Natl Cent Univ, Inst Syst Biol & Bioinformat, Chungli, Taiwan
关键词
correlation coefficient; robust likelihood; bivariate normal;
D O I
10.1080/02331880601013791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article establishes a robust likelihood function about regression parameters for the correlation coefficients modeled in a generalized linear model fashion. The validity of the proposed likelihood requires no knowledge of the true underlying distributions, so long as they have finite fourth moments. The efficacy of the robust methodology is shown via simulations. The asymptotic variance of the maximum-likelihood estimate and the empirical error probabilities of the resultant robust likelihood ratio test are specifically exhibited.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 14 条
[1]  
BARNDORFFNIELSEN OE, 1988, BIOMETRIKA, V75, P374, DOI 10.2307/2336188
[2]  
Campbell JT., 1934, P EDINBURGH MATH SOC, V4, P18, DOI DOI 10.1017/S0013091500024135
[3]  
COX DR, 1974, THEORETIC STAT
[4]   WALDS TEST AS APPLIED TO HYPOTHESES IN LOGIT ANALYSIS [J].
HAUCK, WW ;
DONNER, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (360) :851-853
[5]  
HOLGATE P, 1964, BIOMETRIKA, V51, P241, DOI 10.2307/2334210
[6]  
Huber P. J., 1981, ROBUST STAT
[7]   QUASI-LIKELIHOOD FUNCTIONS [J].
MCCULLAGH, P .
ANNALS OF STATISTICS, 1983, 11 (01) :59-67
[8]  
Royall R, 2000, J AM STAT ASSOC, V95, P760, DOI 10.2307/2669456
[9]   Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions [J].
Royall, R ;
Tsou, TS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :391-404
[10]   Inferences of variance function - A parametric robust way [J].
Tsou, TS .
JOURNAL OF APPLIED STATISTICS, 2005, 32 (08) :785-796