Genetics of plant-pathogen interactions

被引:17
作者
Ji, C [1 ]
Smith-Backer, J [1 ]
Keen, NT [1 ]
机构
[1] Univ Calif Riverside, Dept Plant Pathol, Riverside, CA 92521 USA
关键词
D O I
10.1016/S0958-1669(98)80116-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Progress has occurred in understanding the function of disease-resistance genes that govern the resistance of plants to pathogens, and pathogen-produced molecules, called elicitors, that resistance genes key on. Data support the elicitor-receptor model wherein resistant plants contain receptors for pathogen elicitors. This recognition may be complex, however, involving delivery of elicitors to plant cells by specialized pathogen secretion systems and their processing prior to perception. Furthermore, elicitor receptors may not be the resistance gene proteins that govern specificity of the system. It is now also recognized that many elicitors function as virulence factors for the pathogen but have been co-opted by plants as triggers for active resistance. Major recent advances in the cloning and sequencing of clustered plant disease-resistance genes are providing information on the basis of their recognitional specificities and offer the opportunity to engineer new genes that recognize refractory pathogens or exhibit increased efficacy and durability. In combination with the transformation of cloned disease-resistance genes into new plant species, these approaches should facilitate disease control strategies in practical agriculture.
引用
收藏
页码:202 / 207
页数:6
相关论文
共 53 条
[1]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[2]  
ALVAREZ ME, 1998, IN PRESS CELL
[3]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[4]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[5]  
Bent AF, 1996, PLANT CELL, V8, P1757, DOI 10.1105/tpc.8.10.1757
[6]  
BOLLER T, 1997, MECH RESISTANCE PLAN
[7]   Antigen presentation: A balanced diet [J].
Brenner, M ;
Porcelli, S .
SCIENCE, 1997, 277 (5324) :332-332
[8]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601
[9]   Pathogen avirulence and plant resistance: a key role for recognition [J].
DeWit, PJGM .
TRENDS IN PLANT SCIENCE, 1997, 2 (12) :452-458
[10]   Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses [J].
DrogeLaser, W ;
Kaiser, A ;
Lindsay, W ;
Halkier, BA ;
Loake, GJ ;
Doerner, P ;
Dixon, RA ;
Lamb, C .
EMBO JOURNAL, 1997, 16 (04) :726-738