AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies

被引:150
作者
Sukhinin, AI [1 ]
French, NHF [1 ]
Kasischke, ES [1 ]
Hewson, JH [1 ]
Soja, AJ [1 ]
Csiszar, IA [1 ]
Hyer, EJ [1 ]
Loboda, T [1 ]
Conrad, SG [1 ]
Romasko, VI [1 ]
Pavlichenko, EA [1 ]
Miskiv, SI [1 ]
Slinkina, OA [1 ]
机构
[1] Altarum Inst, Environm & Emerging Technol Div, Ann Arbor, MI 48105 USA
基金
美国国家航空航天局;
关键词
forest fire; NOAA AVHRR; fire detection and mapping; Russia;
D O I
10.1016/j.rse.2004.08.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new database of fire activity in Russia derived from I-km resolution remote sensing imagery is presented and discussed. The procedure used to generate this burned-area product is described, including active-fire detection and burn-scar mapping approaches. Fire detection makes use of a probabilistic procedure using image data from the United States National Oceanic and Atmospheric Administration's (NOAA) advanced very high resolution radiometer (AVHRR) system. Using the combination of AVHRR data collected at the Krasnoyarsk, Russia, high-resolution picture transmission (HRPT) receiving station, and data from the NOAA Satellite Active Archive (SAA), fire maps are being created for all of Russia for 1995 to 1997 and all of Eastern Russia (east of the Ural Mountains) for 1995 to 2002. This mapping effort has resulted in the most complete set of historic fire maps available for Russia. An initial validation indicates that the burned-area estimates are conservative because the approaches do not detect smaller fires, and, in many cases, fire areas are slightly underestimated. Analyses using the fire database showed that an average of 7.7 x 10(6) ha yr(-1) of fire occurred in Eastern Russia between 1996 and 2002 and that fire was widely dispersed in different regions. The satellite-based burned-area estimates area were two to five times greater than those contained in official government burned-area statistics. The data show that there is significant interannual variability in area burned, ranging between a low of 1.5 x 10(6) ha in 1997 to a high of 12.1 x 10(6) ha in 2002. Seasonal patterns of fire are similar to patterns seen in the North American boreal region, with large-fire seasons experiencing more late-season burning (in August and September) than during low-fire years. There was a distinct zonal distribution of fires in Russia; 65% of the area burned occurred in the taiga zone, which includes southern, middle, and northern taiga subzones, 20% in the steppe and forest steppe zones, 12% in the mixed forest zone, and 3% in the tundra and forest-tundra zones. Lands classified as forest experienced 55% of all burned area, while crops and pastures, swamps and bogs, and grass and shrubs land cover categories experienced 13% to 15% each. Finally, the utility of the products is discussed in the context of fire management and carbon cycling. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:546 / 564
页数:19
相关论文
共 76 条
  • [1] Direct carbon emissions from Canadian forest fires, 1959-1999
    Amiro, BD
    Todd, JB
    Wotton, BM
    Logan, KA
    Flannigan, MD
    Stocks, BJ
    Mason, JA
    Martell, DL
    Hirsch, KG
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2001, 31 (03) : 512 - 525
  • [2] [Anonymous], 2001, GLOBAL REGIONAL VEGE
  • [3] [Anonymous], CD ROM LAND RESOURCE
  • [4] BOREAL FORESTS AND TUNDRA
    APPS, MJ
    KURZ, WA
    LUXMOORE, RJ
    NILSSON, LO
    SEDJO, RA
    SCHMIDT, R
    SIMPSON, LG
    VINSON, TS
    [J]. WATER AIR AND SOIL POLLUTION, 1993, 70 (1-4) : 39 - 53
  • [5] Arino O., 2001, P 8 ISPRS C PHYS MEA
  • [6] An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale
    Barbosa, PM
    Grégoire, JM
    Pereira, JMC
    [J]. REMOTE SENSING OF ENVIRONMENT, 1999, 69 (03) : 253 - 263
  • [7] Comparison of three AVHRR-based fire detection algorithms for interior Alaska
    Boles, SH
    Verbyla, DL
    [J]. REMOTE SENSING OF ENVIRONMENT, 2000, 72 (01) : 1 - 16
  • [8] EVALUATION OF A TECHNIQUE FOR SATELLITE-DERIVED AREA ESTIMATION OF FOREST-FIRES
    CAHOON, DR
    STOCKS, BJ
    LEVINE, JS
    COFER, WR
    CHUNG, CC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D4) : 3805 - 3814
  • [9] THE EXTENT OF BURNING IN AFRICAN SAVANNAS
    CAHOON, DR
    LEVINE, JS
    COFER, WR
    STOCKS, BJ
    [J]. LIFE SCIENCES AND SPACE RESEARCH XXV (3): NATURAL AND ARTIFICIAL ECOSYSTEMS, 1994, 14 (11): : 447 - 454
  • [10] Wildland fire detection from space: Theory and application
    Cahoon, DR
    Stocks, BJ
    Alexander, ME
    Baum, BA
    Goldammer, JG
    [J]. BIOMASS BURNING AND ITS INTER-RELATIONSHIPS WITH THE CLIMATE SYSTEM, 2000, 3 : 151 - 169