Parameter estimation in the presence of bounded data uncertainties

被引:108
作者
Chandrasekaran, S [1 ]
Golub, GH
Gu, M
Sayed, AH
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93016 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
least-squares estimation; regularized least-squares; ridge regression; total least-squares; robust estimation; modeling errors; secular equation;
D O I
10.1137/S0895479896301674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and solve a new parameter estimation problem in the presence of data uncertainties. The new method is suitable when a priori bounds on the uncertain data are available, and its solution leads to more meaningful results, especially when compared with other methods such as total least-squares and robust estimation. Its superior performance is due to the fact that the new method guarantees that the effect of the uncertainties will never be unnecessarily overestimated, beyond what is reasonably assumed by the a priori bounds. A geometric interpretation of the solution is provided, along with a closed form expression for it. We also consider the case in which only selected columns of the coefficient matrix are subject to perturbations.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 15 条
[1]   Parameter estimation in the presence of bounded modeling errors [J].
Chandrasekaran, S ;
Golub, GH ;
Gu, M ;
Sayed, AH .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (07) :195-197
[2]  
GHAOUI LE, 1997, SIAM J MATRIX ANAL A, V18, P1035, DOI DOI 10.1137/S0895479896298130
[3]  
Golub G.H., 1997, MATRIX COMPUTATIONS, Vthird
[4]  
GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
[5]   AN ANALYSIS OF THE TOTAL LEAST-SQUARES PROBLEM [J].
GOLUB, GH ;
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) :883-893
[6]  
GOLUB GH, 1996, SCCM9606 STANF U COM
[7]   Linear estimation in Krein spaces .1. Theory [J].
Hassibi, B ;
Sayed, AH ;
Kailath, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (01) :18-33
[8]  
Huffel S. V., 1991, TOTAL LEAST SQUARES
[9]  
Kay S. M., 1998, Fundamentals of Statistical Signal Processing, Volume 1:Estimation Theory, V1
[10]  
Khargonekar P. P., 1991, IEEE T AUTOMAT CONTR, V36, P151