Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco

被引:72
作者
Kaye, C [1 ]
Neven, L [1 ]
Hofig, A [1 ]
Li, QB [1 ]
Haskell, D [1 ]
Guy, C [1 ]
机构
[1] Univ Florida, Inst Food & Agr Sci, Dept Environm Hort, Plant Mol & Cellular Biol Program, Gainesville, FL 32611 USA
关键词
D O I
10.1104/pp.116.4.1367
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The cDNA sequence for CAP160, an acidic protein previously linked with cold acclimation in spinach (Spinacia oleracea L.), was characterized and found to encode a novel acidic protein of 780 amino acids having very limited homology to a pair of Arabidopsis thaliana stress-regulated proteins, rd29A and rd29B. The lack of similarity in the structural organization of the spinach and Arabidopsis genes highlights the absence of a high degree of conservation of this cold-stress gene across taxonomic boundaries. The protein has several unique motifs that may relate to its function during cold stress. Expression of the CAP160 mRNA was increased by low-temperature exposure and water stress in a manner consistent with a probable function during stresses that involve dehydration. The coding sequences for CAP160 and CAP85, another spinach cold-stress protein, were introduced into tobacco (Nicotiana tabacum) under the control of the 35S promoter using Agrobacterium tumefaciens-based transformation. Tobacco plants expressing the proteins individually or coexpressing both proteins were evaluated for relative freezing-stress tolerance. The killing temperature for 50% of the cells of the transgenic plants was not different from that of the wild-type plants. As determined by a more sensitive time/temperature kinetic study, plants expressing the spinach proteins had slightly lower levels of electrolyte leakage than wild-type plants, indicative of a small reduction of freezing-stress injury. Clearly, the heterologous expression of two cold-stress proteins had no profound influence on stress tolerance, a result that is consistent with the quantitative nature of cold-stress-tolerance traits.
引用
收藏
页码:1367 / 1377
页数:11
相关论文
共 62 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance [J].
Artus, NN ;
Uemura, M ;
Steponkus, PL ;
Gilmour, SJ ;
Lin, CT ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13404-13409
[3]  
AUSUBEL FM, 1991, CURRENT PROTOCOLS MO, V2
[4]  
Bogre L, 1996, PLANT CELL, V8, P417, DOI 10.1105/tpc.8.3.417
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   IMMUNOCYTOLOCALIZATION OF EXTENSIN IN DEVELOPING SOYBEAN SEED COATS BY IMMUNOGOLD SILVER STAINING AND BY TISSUE PRINTING ON NITROCELLULOSE PAPER [J].
CASSAB, GI ;
VARNER, JE .
JOURNAL OF CELL BIOLOGY, 1987, 105 (06) :2581-2588
[7]   MOLECULAR-CLONING AND CHARACTERIZATION OF COLD-REGULATED GENES IN BARLEY [J].
CATTIVELLI, L ;
BARTELS, D .
PLANT PHYSIOLOGY, 1990, 93 (04) :1504-1510
[8]  
CHANG C, 1987, J BIOL CHEM, V262, P2826
[9]   A VIEW OF PLANT DEHYDRINS USING ANTIBODIES SPECIFIC TO THE CARBOXY-TERMINAL PEPTIDE [J].
CLOSE, TJ ;
FENTON, RD ;
MOONAN, F .
PLANT MOLECULAR BIOLOGY, 1993, 23 (02) :279-286