Node-pancyclicity and edge-pancyclicity of hypercube variants

被引:35
作者
Hu, Ken S. [1 ]
Yeoh, Shyun-Shyun [1 ]
Chen, Chiuyuan [1 ]
Hsu, Lih-Hsing [1 ]
机构
[1] Providence Univ, Dept Comp Sci & Informat Engn, Taichung 433, Taiwan
关键词
interconnection networks; hypercube; crossed cube; Mobius cube; locally twisted cube; pancyclicity;
D O I
10.1016/j.ipl.2006.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Twisted cubes, crossed cubes, Mobius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The 4-pancyclicity of twisted cubes, crossed cubes, Mobius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes, crossed cubes, Mobius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform. Sci. 113 (1999) 147-167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parall. Distr. 11 (1) (2000) 64-80; J. Fan, Hamilton-connectivity and cycle embedding of the Mobius cubes, Inform. Process. Lett. 82 (2002) 113-117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138; M. Xu, J.M. Xu, Edge-pancyclicity of Mobius cubes, Inform. Process. Lett. 96 (2005) 136-140], respectively. It should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Mobius cubes and locally twisted cubes are 4-edge-pancyclic. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 12 条
[1]   Edge congestion and topological properties of crossed cubes [J].
Chang, CP ;
Sung, TY ;
Hsu, LH .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2000, 11 (01) :64-80
[2]   Topological properties of twisted cube [J].
Chang, CP ;
Wang, JN ;
Hsu, LH .
INFORMATION SCIENCES, 1999, 113 (1-2) :147-167
[3]   THE MOBIUS CUBES [J].
CULL, P ;
LARSON, SM .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (05) :647-659
[4]   A VARIATION ON THE HYPERCUBE WITH LOWER DIAMETER [J].
EFE, K .
IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (11) :1312-1316
[5]  
FAN J, UNPUB ALGORITHMICA
[6]  
Fan JX, 2005, LECT NOTES COMPUT SC, V3827, P1090
[7]   Node-pancyclicity and edge-pancyclicity of crossed cubes [J].
Fan, JX ;
Lin, XL ;
Jia, XH .
INFORMATION PROCESSING LETTERS, 2005, 93 (03) :133-138
[8]   Hamilton-connectivity and cycle-embedding of the Mobius cubes [J].
Fan, JX .
INFORMATION PROCESSING LETTERS, 2002, 82 (02) :113-117
[9]  
HILBERS PAJ, 1987, LECT NOTES COMPUT SC, V258, P152
[10]   Edge-pancyclicity of Mobius cubes [J].
Xu, M ;
Xu, JM .
INFORMATION PROCESSING LETTERS, 2005, 96 (04) :136-140