Motion in periodic potentials

被引:41
作者
Asch, J
Knauf, A
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
D O I
10.1088/0951-7715/11/1/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider motion in a periodic potential in a classical, quantum, and semiclassical context. Various results on the distribution of asymptotic velocities are proven.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 23 条
[1]  
BENATTI F, 1997, QUANTUM CHAOS DYNAMI
[2]   RIEMANNIAN TORI WITHOUT CONJUGATE-POINTS ARE FLAT [J].
BURAGO, D ;
IVANOV, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (03) :259-269
[3]  
CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
[4]   POTENTIALS ON THE 2-TORUS FOR WHICH THE HAMILTONIAN FLOW IS ERGODIC [J].
DONNAY, V ;
LIVERANI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :267-302
[5]  
GERARD C, 1997, SCATTERING THEORY PE
[6]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[8]  
Kato T., 1980, PERTURBATION THEORY
[9]  
KLEIN M, 1993, LECT NOTES PHYSICS, V13
[10]   RIEMANNIAN MANIFOLDS WITH GEODESIC FLOW OF ANOSOV TYPE [J].
KLINGENBERG, W .
ANNALS OF MATHEMATICS, 1974, 99 (01) :1-13