Type 1 (insulin-dependent) diabetes is a complex trait. The region harboring the ICAM1 gene on 19p13 links to type 1 diabetes, and a growing body of evidence indicates that intercellular adhesion molecule-1 (ICAM-1) could play a role in type 1 diabetes development. Recently, association studies of an ICAM-1 K469E polymorphism in type 1 diabetes populations have reported conflicting results. Hence, we performed a transmission disequilibrium test analysis of the ICAM-1 K469E variations in 253 Danish type 1 diabetes families. Linkage and association was not found between the ICAM-1 K469E variation and type 1 diabetes in Danish patients (P(tdt)greater than or equal to0.48), and our data did not indicate an interaction between ICAM1 and IDDM1 in predisposition to type 1 diabetes in Danes (P=0.78). We did not observe significant association with late-onset type 1 diabetes (P(tdt)greater than or equal to0.12) or differences in transmission patterns between groups of affected offspring stratified for age at onset (P greater than or equal to0.19), as suggested in Japanese patients. Combined analysis of the present and previously reported transmission data comprising 728 affected offspring of Romanian, Finnish, and Danish ancestry suggested association between the ICAM-1 E469 allele and type 1 diabetes (P-tdt=0.013), but association was not found in the combined Scandinavian material. In conclusion, we found no association of the ICAM-1 K469E polymorphism with type 1 diabetes or its subsets stratified for age at onset and HLA risk in Danish patients. Analysis of ICAM-1 K469E transmissions reported in three populations suggested association to type 1 diabetes, but also demonstrated heterogeneity between populations.