Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO-3 cotransporter

被引:98
作者
Becker, Holger M. [1 ]
Deitmer, Joachim W. [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Biol, Abt Allgemeine Zool, D-67653 Kaiserslautern, Germany
关键词
D O I
10.1074/jbc.M700066200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several acid/ base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H+ and Na+ concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na+ rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH2-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H+ change following addition of CO2/HCO3- confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.
引用
收藏
页码:13508 / 13521
页数:14
相关论文
共 35 条
[1]   ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE-II [J].
ALEXANDER, RS ;
NAIR, SK ;
CHRISTIANSON, DW .
BIOCHEMISTRY, 1991, 30 (46) :11064-11072
[2]   Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter [J].
Alvarez, BV ;
Loiselle, FB ;
Supuran, CT ;
Schwartz, GJ ;
Casey, JR .
BIOCHEMISTRY, 2003, 42 (42) :12321-12329
[3]   CARBONIC-ANHYDRASE ACTIVITY ASSOCIATED WITH THE CYANOBACTERIUM SYNECHOCOCCUS PCC7942 [J].
BADGER, MR ;
PRICE, GD .
PLANT PHYSIOLOGY, 1989, 89 (01) :51-60
[4]   Voltage dependence of H+ buffering mediated by sodium bicarbonate cotransport expressed in Xenopus oocytes [J].
Becker, HM ;
Deitmer, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (27) :28057-28062
[5]   Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes [J].
Becker, HM ;
Bröer, S ;
Deitmer, JW .
BIOPHYSICAL JOURNAL, 2004, 86 (01) :235-247
[6]   Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase [J].
Becker, HM ;
Hirnet, D ;
Fecher-Trost, C ;
Sültemeyer, D ;
Deitmer, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :39882-39889
[7]   Intracellular pH regulation in cultured astrocytes from rat hippocampus .2. Electrogenic Na/HCO3 cotransport [J].
Bevensee, MO ;
Apkon, M ;
Boron, WF .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (04) :467-483
[8]   INTRACELLULAR PH REGULATION IN THE RENAL PROXIMAL TUBULE OF THE SALAMANDER [J].
BORON, WF ;
BOULPAEP, EL .
JOURNAL OF GENERAL PHYSIOLOGY, 1983, 81 (01) :53-94
[9]   Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH [J].
Bröer, S ;
Schneider, HP ;
Bröer, A ;
Rahman, B ;
Hamprecht, B ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1998, 333 :167-174
[10]   EVIDENCE FOR ELECTROGENIC SODIUM-BICARBONATE COTRANSPORT IN CULTURED RAT CEREBELLAR ASTROCYTES [J].
BRUNE, T ;
FETZER, S ;
BACKUS, KH ;
DEITMER, JW .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1994, 429 (01) :64-71