Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis

被引:108
作者
Woods, Anita [1 ]
Wang, Guoyan [1 ]
Dupuis, Holly [1 ]
Shao, Zhuhong [1 ]
Beier, Frank [1 ]
机构
[1] Univ Western Ontario, Dept Physiol & Pharmacol, CIHR Grp Skeletal Dev & Remodeling, London, ON N6A 5C1, Canada
关键词
D O I
10.1074/jbc.M700680200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular mechanisms controlling differentiation of mesenchymal precursor cells into chondrocytes (chondrogenesis) are not completely understood. We have recently shown that the small GTPase RhoA inhibits this process. Here we demonstrate that a different Rho GTPase family member, Rac1, promotes chondrogenesis. Pharmacological inhibition of Rac1 expression in micromass culture resulted in reduced mRNA levels of the chondrogenic markers collagen II and aggrecan, and decreased accumulation of glycosaminoglycans. Expression of the essential chondrogenic transcription factors Sox9, Sox5, and Sox6 was also reduced upon inhibition of Rac1 signaling. In contrast, overexpression of Rac1 in the chondrogenic ATDC5 cell line increased mRNA transcripts of Sox9, 5, and 6, collagen II, and aggrecan. Inhibition of Rac1 resulted in a reduction in the number, size, and organization of cellular condensations and decreased expression of N-cadherin. Overexpression of Rac1 resulted in an increase in N-cadherin expression levels. Furthermore, genetic ablation of Rac1 in primary micromass cultures resulted in reduced expression of chondrogenic markers. Additionally, we provide evidence that Cdc42 also promotes chondrogenesis. Overexpression of Cdc42 in ATDC5 cells resulted in increased expression of Sox5, Sox9, and collagen II but not Sox6, aggrecan, or N-cadherin. Therefore, we demonstrate that Rac1 and Cdc42 are positive regulators of chondrogenesis, but act at least in part through different cellular and molecular mechanisms.
引用
收藏
页码:23500 / 23508
页数:9
相关论文
共 57 条
[1]   STAGE-RELATED CAPACITY FOR LIMB CHONDROGENESIS IN CELL-CULTURE [J].
AHRENS, PB ;
SOLURSH, M ;
REITER, RS .
DEVELOPMENTAL BIOLOGY, 1977, 60 (01) :69-82
[2]   The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6 [J].
Akiyama, H ;
Chaboissier, MC ;
Martin, JF ;
Schedl, A ;
de Crombrugghe, B .
GENES & DEVELOPMENT, 2002, 16 (21) :2813-2828
[3]  
Allen WE, 1997, J CELL SCI, V110, P707
[4]   MICROFILAMENT MODIFICATION BY DIHYDROCYTOCHALASIN-B CAUSES RETINOIC ACID-MODULATED CHONDROCYTES TO REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WITHOUT A CHANGE IN SHAPE [J].
BENYA, PD ;
BROWN, PD ;
PADILLA, SR .
JOURNAL OF CELL BIOLOGY, 1988, 106 (01) :161-170
[5]   DIHYDROCYTOCHALASIN-B ENHANCES TRANSFORMING GROWTH FACTOR-BETA-INDUCED REEXPRESSION OF THE DIFFERENTIATED CHONDROCYTE PHENOTYPE WITHOUT STIMULATION OF COLLAGEN-SYNTHESIS [J].
BENYA, PD ;
PADILLA, SR .
EXPERIMENTAL CELL RESEARCH, 1993, 204 (02) :268-277
[6]   Sox9 is required for cartilage formation [J].
Bi, WM ;
Deng, JM ;
Zhang, ZP ;
Behringer, RR ;
de Crombrugghe, B .
NATURE GENETICS, 1999, 22 (01) :85-89
[7]   The small GTPases rho and rac are required for the establishment of cadherin-dependent cell-cell contacts [J].
Braga, VMM ;
Machesky, LM ;
Hall, A ;
Hotchin, NA .
JOURNAL OF CELL BIOLOGY, 1997, 137 (06) :1421-1431
[8]   ALTERATIONS IN CHONDROCYTE CYTOSKELETAL ARCHITECTURE DURING PHENOTYPIC MODULATION BY RETINOIC ACID AND DIHYDROCYTOCHALASIN-B INDUCED REEXPRESSION [J].
BROWN, PD ;
BENYA, PD .
JOURNAL OF CELL BIOLOGY, 1988, 106 (01) :171-179
[9]  
Charité J, 2000, DEVELOPMENT, V127, P2461
[10]   N-cadherin-dependent cell-cell contact regulates Rho GTPases and β-catenin localization in mouse C2C12 myoblasts [J].
Charrasse, S ;
Meriane, M ;
Comunale, F ;
Blangy, A ;
Gauthier-Rouvière, C .
JOURNAL OF CELL BIOLOGY, 2002, 158 (05) :953-965