Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials

被引:89
作者
He, Kai [1 ]
Xin, Huolin L. [1 ]
Zhao, Kejie [2 ,3 ]
Yu, Xiqian [4 ]
Nordlund, Dennis [5 ]
Weng, Tsu-Chien [5 ]
Li, Jing [1 ,6 ]
Jiang, Yi [7 ]
Cadigan, Christopher A. [8 ]
Richards, Ryan M. [8 ]
Doeff, Marca M. [9 ]
Yang, Xiao-Qing [4 ]
Stach, Eric A. [1 ]
Li, Ju [2 ,3 ]
Lin, Feng [8 ,9 ]
Su, Dong [1 ,6 ]
机构
[1] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[2] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[6] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA
[7] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[8] Colorado Sch Mines, Mat Sci Program, Dept Chem & Geochem, Golden, CO 80401 USA
[9] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
Lithium ion battery; nickel oxide; conversion reaction; in situ TEM; incubation; rate capability; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; ION BATTERIES; LITHIUM; PERFORMANCE; INTERCALATION; CHALLENGES; NANOSHEETS; NANOWIRES; KINETICS;
D O I
10.1021/nl5049884
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni2+ -> Ni-0) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a shrinking-core mode). However, the interior capacity for Ni2+ -> Ni-0 can be accessed efficiently following the nucleation of lithiation fingers that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging.
引用
收藏
页码:1437 / 1444
页数:8
相关论文
共 40 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Intercalation Pathway in Many-Particle LiFePO4 Electrode Revealed by Nanoscale State-of-Charge Mapping [J].
Chueh, William C. ;
El Gabaly, Farid ;
Sugar, Joshua D. ;
Bartelt, Norman C. ;
McDaniel, Anthony H. ;
Fenton, Kyle R. ;
Zavadil, Kevin R. ;
Tyliszczak, Tolek ;
Lai, Wei ;
McCarty, Kevin F. .
NANO LETTERS, 2013, 13 (03) :866-872
[7]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[8]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[9]   Recent progress in nickel based materials for high performance pseudocapacitor electrodes [J].
Feng, Liangdong ;
Zhu, Yufu ;
Ding, Hongyan ;
Ni, Chaoying .
JOURNAL OF POWER SOURCES, 2014, 267 :430-444
[10]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013