An analysis of Mek1 signaling in cell proliferation and transformation

被引:68
作者
Greulich, H [1 ]
Erikson, RL [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1074/jbc.273.21.13280
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Mek1 dual specificity protein kinase phosphorylates and activates the mitogen-activated protein kinases Erk1 and Erk2 in response to mitogenic stimulation. The molecular events downstream of Mek and Erk necessary to promote cell cycle entry are largely undefined. In order to study signals emanating from Mek independent of upstream proteins capable of activating multiple sig naling pathways, we fused the hormone-binding domain of the estrogen receptor (ER) to the C terminus of constitutively activated Mek1 phosphorylation site mutants. Although 4-OH-tamoxifen stimulation of NIH-3T3 cells expressing constitutively activated Mek-ER resulted in only a small increase in specific activity of the fusion protein, a 5-10 fold increase in total cellular Mek activity was observed over a period of 1-2 days due to an accumulation of fusion protein. Induction of constitutively activated Mek-ER in NIH-3T3 cells resulted in accelerated S phase entry, proliferation in low serum, morphological transformation, and anchorage independent growth, Endogenous Erk1 and Erk2 were phosphorylated with kinetics similar to the elevation of Mek-ER activity. However, elevated Mek-ER activity attenuated subsequent stimulation of Erk1 and Erk2 by serum. 4-OH-tamoxifen stimulation of Mek-ER-expressing fibroblasts also resulted in up-regulation of cyclin D1 expression and down-regulation of p27(Kip1) expression, establishing a direct link between Mek1 and the cell cycle machinery.
引用
收藏
页码:13280 / 13288
页数:9
相关论文
共 48 条
[1]   Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27(KIP1) [J].
Aktas, H ;
Cai, H ;
Cooper, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (07) :3850-3857
[2]   PHORBOL ESTER STIMULATES A PROTEIN-TYROSINE THREONINE KINASE THAT PHOSPHORYLATES AND ACTIVATES THE ERK-1 GENE-PRODUCT [J].
ALESSANDRINI, A ;
CREWS, CM ;
ERIKSON, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :8200-8204
[3]   Mek1 phosphorylation site mutants activate Raf-1 in NIH 3T3 cells [J].
Alessandrini, A ;
Greulich, H ;
Huang, WD ;
Erikson, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31612-31618
[4]   IDENTIFICATION OF THE SITES IN MAP KINASE KINASE-1 PHOSPHORYLATED BY P74(RAF-1) [J].
ALESSI, DR ;
SAITO, Y ;
CAMPBELL, DG ;
COHEN, P ;
SITHANANDAM, G ;
RAPP, U ;
ASHWORTH, A ;
MARSHALL, CJ ;
COWLEY, S .
EMBO JOURNAL, 1994, 13 (07) :1610-1619
[5]  
ASHWORTH A, 1992, ONCOGENE, V7, P2555
[6]   RAF MEETS RAS - COMPLETING THE FRAMEWORK OF A SIGNAL-TRANSDUCTION PATHWAY [J].
AVRUCH, J ;
ZHANG, XF ;
KYRIAKIS, JM .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (07) :279-283
[7]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[8]   HIERARCHY OF BINDING-SITES FOR GRB2 AND SHC ON THE EPIDERMAL GROWTH-FACTOR RECEPTOR [J].
BATZER, AG ;
ROTIN, D ;
URENA, JM ;
SKOLNIK, EY ;
SCHLESSINGER, J .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5192-5201
[9]  
BROTT BK, 1993, CELL GROWTH DIFFER, V4, P921
[10]  
BRUNET A, 1994, ONCOGENE, V9, P3379