Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

被引:472
作者
Wang, HB
Dembo, M
Wang, YL
机构
[1] Univ Massachusetts, Sch Med, Dept Physiol, Worcester, MA 01605 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2000年 / 279卷 / 05期
关键词
mechanical signaling; cell cycle; cell shape; traction force; cancer;
D O I
10.1152/ajpcell.2000.279.5.C1345
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.
引用
收藏
页码:C1345 / C1350
页数:6
相关论文
共 29 条
[1]   Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals [J].
Banes, AJ ;
Tsuzaki, M ;
Yamamoto, J ;
Fischer, T ;
Brigman, B ;
Brown, T ;
Miller, L .
BIOCHEMISTRY AND CELL BIOLOGY, 1995, 73 (7-8) :349-365
[2]  
BONDY GP, 1985, CANCER RES, V45, P6005
[3]  
CHAMBERS AF, 1993, CRIT REV ONCOGENESIS, V4, P95
[4]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[5]   Mechanotransduction in response to shear stress - Roles of receptor tyrosine kinases, integrins, and Shc [J].
Chen, KD ;
Li, YS ;
Kim, M ;
Li, S ;
Yuan, S ;
Chien, S ;
Shyy, JYJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18393-18400
[6]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[7]   Stresses at the cell-to-substrate interface during locomotion of fibroblasts [J].
Dembo, M ;
Wang, YL .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2307-2316
[8]   ROLE OF CELL-SHAPE IN GROWTH-CONTROL [J].
FOLKMAN, J ;
MOSCONA, A .
NATURE, 1978, 273 (5661) :345-349
[9]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501
[10]   Transduction - Integrin signaling [J].
Giancotti, FG ;
Ruoslahti, E .
SCIENCE, 1999, 285 (5430) :1028-1032