Mapping protein-protein interactions between MutL and MutH by cross-linking

被引:46
作者
Giron-Monzon, L
Manelyte, L
Ahrends, R
Kirsch, D
Spengler, B
Friedhoff, P
机构
[1] Univ Giessen, Inst Biochem FB 08, D-35392 Giessen, Germany
[2] Univ Giessen, Inst Anorgan & Analyt Chem FB 08, D-35392 Giessen, Germany
关键词
D O I
10.1074/jbc.M409307200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Strand discrimination in Escherichia coli DNA mismatch repair requires the activation of the endonuclease MutH by MutL. There is evidence that MutH binds to the N-terminal domain of MutL in an ATP-dependent manner; however, the interaction sites and the molecular mechanism of MutH activation have not yet been determined. We used a combination of site-directed mutagenesis and site-specific cross-linking to identify protein interaction sites between the proteins MutH and MutL. Unique cysteine residues were introduced in cysteine-free variants of MutH and MutL. The introduced cysteines were modified with the cross-linking reagent 4-maleimidobenzophenone. Photoactivation resulted in cross-links verified by mass spectrometry of some of the single cysteine variants to their respective Cys-free partner proteins. Moreover, we mapped the site of interaction by cross-linking different combinations of single cysteine MutH and MutL variants with thiol-specific homobifunctional cross-linkers of varying length. These results were used to model the MutH.MutL complex and to explain the ATP dependence of this interaction.
引用
收藏
页码:49338 / 49345
页数:8
相关论文
共 37 条
[1]   The coordinated functions of the E-coli MutS and MutL proteins in mismatch repair [J].
Acharya, S ;
Foster, PL ;
Brooks, P ;
Fishel, R .
MOLECULAR CELL, 2003, 12 (01) :233-246
[2]   Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis [J].
Ban, C ;
Yang, W .
CELL, 1998, 95 (04) :541-552
[3]   Transformation of MutL by ATP binding and hydrolysis: A switch in DNA mismatch repair [J].
Ban, C ;
Junop, M ;
Yang, W .
CELL, 1999, 97 (01) :85-97
[4]   Structural basis for MutH activation in E-coli mismatch repair and relationship of MutH to restriction endonucleases [J].
Ban, C ;
Yang, W .
EMBO JOURNAL, 1998, 17 (05) :1526-1534
[5]   Differential and simultaneous adenosine di- and triphosphate binding by MutS [J].
Bjornson, KP ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :18557-18562
[6]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[7]   In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair [J].
Burdett, V ;
Baitinger, C ;
Viswanathan, M ;
Lovett, ST ;
Modrich, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6765-6770
[8]   Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187 [J].
Classen, S ;
Olland, S ;
Berger, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10629-10634
[9]  
CREIGHTON TE, 1993, PROTEINS, P333
[10]   A SET OF LACZ MUTATIONS IN ESCHERICHIA-COLI THAT ALLOW RAPID DETECTION OF EACH OF THE 6 BASE SUBSTITUTIONS [J].
CUPPLES, CG ;
MILLER, JH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (14) :5345-5349