Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications

被引:140
作者
Norris, EH
Giasson, BI
Ischiropoulos, H
Lee, VMY
机构
[1] Univ Penn, Med Ctr, Ctr Neurodegenerat Dis Res, Philadelphia, PA 19104 USA
[2] Univ Penn, Med Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Med Ctr, Childrens Hosp Philadelphia, Stokes Res Inst, Philadelphia, PA 19104 USA
[4] Univ Penn, Med Ctr, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M212436200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Filamentous inclusions of alpha-synuclein protein are hallmarks of neurodegenerative diseases collectively known as synucleinopathies. Previous studies have shown that exposure to oxidative and nitrative species stabilizes alpha-synuclein filaments in vitro, and this stabilization may be due to dityrosine cross-linking. To test this hypothesis, we mutated tyrosine residues to phenylalanine and generated recombinant wild type and mutant alpha-synuclein proteins. alpha-Synuclein proteins lacking some or all tyrosine residues form fibrils to the same extent as the wild type protein. Tyrosine residues are not required for protein cross-linking or filament stabilization resulting from transition metal-mediated oxidation, because higher M-r SDS-resistant oligomers and filaments stable to chaotropic agents are detected using all Tyr --> Phe alpha-synuclein mutants. By contrast, cross-linking resulting from exposure to nitrating agents required the presence of one or more tyrosine residues. Furthermore, tyrosine cross-linking is involved in filament stabilization, because nitrating agent-exposed assembled wild type, but not mutant alpha-synuclein lacking all tyrosine residues, was stable to chaotropic treatment. In addition, the formation of stable alpha-synuclein inclusions in intact cells after exposure to oxidizing and nitrating species requires tyrosine residues. These findings demonstrate that nitrative and/or oxidative stress results in distinct mechanisms of alpha-synuclein protein modifications that can influence the formation of stable alpha-synuclein fibrils.
引用
收藏
页码:27230 / 27240
页数:11
相关论文
共 47 条
[1]  
Baba M, 1998, AM J PATHOL, V152, P879
[2]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[3]   Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss [J].
Brooks, AI ;
Chadwick, CA ;
Gelbard, HA ;
Cory-Slechta, DA ;
Federoff, HJ .
BRAIN RESEARCH, 1999, 823 (1-2) :1-10
[4]  
Chen HH, 1997, J EPIDEMIOL BIOSTAT, V2, P9
[5]   The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease [J].
Clayton, DF ;
George, JM .
TRENDS IN NEUROSCIENCES, 1998, 21 (06) :249-254
[6]   SYNERGISTIC INTERACTIONS BETWEEN NADPH CYTOCHROME-P-450 REDUCTASE, PARAQUAT, AND IRON IN THE GENERATION OF ACTIVE OXYGEN RADICALS [J].
CLEJAN, L ;
CEDERBAUM, AI .
BIOCHEMICAL PHARMACOLOGY, 1989, 38 (11) :1779-1786
[7]   Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease:: Implications for pathogenesis and therapy [J].
Conway, KA ;
Lee, SJ ;
Rochet, JC ;
Ding, TT ;
Williamson, RE ;
Lansbury, PT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) :571-576
[8]   Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease [J].
Conway, KA ;
Harper, JD ;
Lansbury, PT .
NATURE MEDICINE, 1998, 4 (11) :1318-1320
[9]   Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct [J].
Conway, KA ;
Rochet, JC ;
Bieganski, RM ;
Lansbury, PT .
SCIENCE, 2001, 294 (5545) :1346-1349
[10]   Stabilization of α-synuclein secondary structure upon binding to synthetic membranes [J].
Davidson, WS ;
Jonas, A ;
Clayton, DF ;
George, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9443-9449