Tensorial density functional theory for non-spherical hard-body fluids

被引:54
作者
Hansen-Goos, Hendrik [1 ,2 ,3 ]
Mecke, Klaus [4 ]
机构
[1] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA
[2] Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[4] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
关键词
FUNDAMENTAL MEASURE-THEORY; FREE-ENERGY MODEL; PHASE-TRANSITIONS; COLLOIDAL PARTICLES; SPHERE MIXTURES; BEHAVIOR; THERMODYNAMICS; INTERFACE;
D O I
10.1088/0953-8984/22/36/364107
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In a recent publication (Hansen-Goos and Mecke 2009 Phys. Rev. Lett. 102 018302) we constructed a free energy functional for the inhomogeneous hard-body fluid, which reduces to Rosenfeld's fundamental measure theory (Rosenfeld 1989 Phys. Rev. Lett. 63 980) when applied to hard spheres. The new functional is able to yield the isotropic-nematic transition for the hard-spherocylinder fluid in contrast to Rosenfeld's fundamental measure theory for non-spherical particles (Rosenfeld 1994 Phys. Rev. E 50 R3318). The description of inhomogeneous isotropic fluids is also improved when compared with data from Monte Carlo simulations for hard spherocylinders in contact with a planar hard wall. However, the new functional for the inhomogeneous fluid in general does not comply with the exact second order virial expansion. We introduced the. correction in order to minimize the deviation from Onsager's exact result in the isotropic bulk fluid. In this article we give a detailed account of the construction of the new functional. An extension of the. correction makes the latter better suited for non-isotropic particle distributions. The extended. correction is shown to improve the description of the isotropic-nematic bulk phase diagram while it has little effect on the results for the isotropic but inhomogeneous hard-spherocylinder fluid. We argue that the gain from using higher order tensorial weighted densities in the theory is likely to be inferior to the associated increase in complexity.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[2]   Tracing the phase boundaries of hard spherocylinders [J].
Bolhuis, P ;
Frenkel, D .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (02) :666-687
[3]   Numerical study of the phase behavior of rodlike colloids with attractive interactions [J].
Bolhuis, PG ;
Stroobants, A ;
Frenkel, D ;
Lekkerkerker, HNW .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (05) :1551-1564
[4]   Colloidal rod-sphere mixtures: Fluid-fluid interfaces and the Onsager limit [J].
Brader, JM ;
Esztermann, A ;
Schmidt, M .
PHYSICAL REVIEW E, 2002, 66 (03)
[5]  
Chavel I., 1993, Riemannian Geometry: A Modern Introduction
[6]   Density functional for anisotropic fluids [J].
Cinacchi, G ;
Schmid, F .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (46) :12223-12234
[7]   Close to the edge of fundamental measure theory:: a density functional for hard-sphere mixtures [J].
Cuesta, JA ;
Martínez-Ratón, Y ;
Tarazona, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (46) :11965-11980
[8]   Fluid mixtures of parallel hard cubes [J].
Cuesta, JA .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3742-3745
[9]   The adsorption sites of rare gases on metallic surfaces: a review [J].
Diehl, RD ;
Seyller, T ;
Caragiu, M ;
Leatherman, GS ;
Ferralis, N ;
Pussi, K ;
Kaukasoina, P ;
Lindroos, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (29) :S2839-S2862
[10]   Entropic wetting in colloidal suspensions [J].
Dijkstra, M ;
van Roij, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (45) :S3507-S3514