Regularized Boltzmann operators

被引:9
作者
Buet, C
Cordier, S
Degond, P
机构
[1] CEA, F-91680 Bruyeres Le Chatel, France
[2] Univ Paris 06, URA CNRS 189, Anal Numer Lab, F-75252 Paris 05, France
[3] Univ Toulouse 3, UMR CNRS 9974, UFR MIG, F-31062 Toulouse, France
关键词
kinetic models; Boltzmann equation; collisional invariants; H-theorem; particle methods; discrete velocity methods;
D O I
10.1016/S0898-1221(97)00258-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose two regularization approaches for the Boltzmann collision operator. The constructed operators preserve the mass, momentum and energy; their equilibrium states are Maxwellians and they satisfy the H-theorem. In the first approach, the regularization consists in allowing microscopic collisions which do not exactly preserve energy and momentum. However, the limit of the mollified operator when the cut-off parameter tends to 0 is not the usual Boltzmann operator unless a certain condition on the distribution function is satisfied. In the second approach, the regularization relies on a smoothing of the masses of the particles and leads to a regularized operator which formally tends to the Boltzmann operator for any arbitrary distribution function, when the cut-off parameter tends to zero.
引用
收藏
页码:55 / 74
页数:20
相关论文
共 25 条
[1]  
Bird G. A., 1994, MOL GAS DYNAMICS DIR
[2]  
BOBYLEV A, 1995, CONSISTENCY RESULT D
[3]   STATISTICAL COLLISION MODEL FOR MONTE-CARLO SIMULATION OF POLYATOMIC GAS-MIXTURE [J].
BORGNAKKE, C ;
LARSEN, PS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 18 (04) :405-420
[4]  
BOURGAT JF, 1994, EUR J MECH B
[5]  
Buet C., 1996, Transport Theory and Statistical Physics, V25, P33, DOI 10.1080/00411459608204829
[6]  
BUET C, UNPUB DISCRETE VELOC
[7]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[8]   THE WEIGHTED PARTICLE METHOD FOR CONVECTION-DIFFUSION EQUATIONS .2. THE ANISOTROPIC CASE [J].
DEGOND, P ;
MASGALLIC, S .
MATHEMATICS OF COMPUTATION, 1989, 53 (188) :509-525
[9]   THE WEIGHTED PARTICLE METHOD FOR CONVECTION-DIFFUSION EQUATIONS .1. THE CASE OF AN ISOTROPIC VISCOSITY [J].
DEGOND, P ;
MASGALLIC, S .
MATHEMATICS OF COMPUTATION, 1989, 53 (188) :485-507
[10]  
DESVILIETTES L, 1995, ACT WORKSH GDR SPARC