Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion

被引:48
作者
Carman, George M. [1 ]
Han, Gil-Soo [1 ]
机构
[1] Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2007年 / 1771卷 / 03期
关键词
phospholipid synthesis; phosphatidylinositol synthase; phosphatidylserine synthase; transcriptional regulation; yeast; zinc;
D O I
10.1016/j.bbalip.2006.05.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The synthesis of phospholipids in the yeast Saccharomyces cerevisiae is regulated by zinc, an essential mineral required for growth and metabolism. Cells depleted of zinc contain increased levels of phosphatidylinositol and decreased levels of phosphatidylethanolamine. In addition to the major phospholipids, the levels of the minor phospholipids phosphatidate and diacylglycerol pyrophosphate decrease in the vacuole membrane of zinc-depleted cells. Alterations in phosphatidylinositol and phosphatidylethanolamine can be ascribed to an increase in PIS1-encoded phosphatidylinositol synthase activity and to decreases in the activities of CDP-diacylglycerol pathway enzymes including the CHO1-encoded phosphatidylserine synthase, respectively. Alterations in the minor vacuole membrane phospholipids are due to the induction of the DPPI-encoded diacylglycerol pyrophosphate phosphatase. These changes in the activities of phospholipid biosynthetic enzymes result from differential regulation of gene expression at the level of transcription. Under zinc-deplete conditions, the positive transcription factor Zap 1 p stimulates the expression of the DPP1 and PIS1 genes through the cis-acting element UAS(ZRE). In contrast, the negative regulatory protein Opi1p, which is involved in inositol-mediated regulation of phospholipid synthesis, represses the expression of the CHO1 gene through the cis-acting element UAS(INO). Regulation of phospholipid synthesis may provide an important mechanism by which cells cope with the stress of zinc depletion, given the roles that phospholipids play in the structure and function of cellular membranes.(c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 330
页数:9
相关论文
共 156 条
[1]   Autophagy in yeast: Mechanistic insights and physiological function [J].
Abeliovich, H ;
Klionsky, DJ .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (03) :463-+
[2]  
ATKINSON K, 1980, J BIOL CHEM, V255, P6653
[3]   YEAST MUTANTS AUXOTROPHIC FOR CHOLINE OR ETHANOLAMINE [J].
ATKINSON, KD ;
JENSEN, B ;
KOLAT, AI ;
STORM, EM ;
HENRY, SA ;
FOGEL, S .
JOURNAL OF BACTERIOLOGY, 1980, 141 (02) :558-564
[4]   FUNCTIONAL-CHARACTERIZATION OF AN INOSITOL-SENSITIVE UPSTREAM ACTIVATION SEQUENCE IN YEAST - A CIS-REGULATORY ELEMENT RESPONSIBLE FOR INOSITOL-CHOLINE MEDIATED REGULATION OF PHOSPHOLIPID BIOSYNTHESIS [J].
BACHHAWAT, N ;
OUYANG, QA ;
HENRY, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25087-25095
[5]   CIS AND TRANS REGULATORY ELEMENTS REQUIRED FOR REGULATION OF THE CHO1 GENE OF SACCHAROMYCES-CEREVISIAE [J].
BAILIS, AM ;
LOPES, JM ;
KOHLWEIN, SD ;
HENRY, SA .
NUCLEIC ACIDS RESEARCH, 1992, 20 (06) :1411-1418
[6]   THE MEMBRANE-ASSOCIATED ENZYME PHOSPHATIDYLSERINE SYNTHASE IS REGULATED AT THE LEVEL OF MESSENGER-RNA ABUNDANCE [J].
BAILIS, AM ;
POOLE, MA ;
CARMAN, GM ;
HENRY, SA .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :167-176
[7]   Phosphatidylinositol 4-kinases [J].
Balla, T .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1998, 1436 (1-2) :69-85
[8]   BIOSYNTHESIS OF PHOSPHOINOSITOL-CONTAINING SPHINGOLIPIDS FROM PHOSPHATIDYLINOSITOL BY A MEMBRANE PREPARATION FROM SACCHAROMYCES-CEREVISIAE [J].
BECKER, GW ;
LESTER, RL .
JOURNAL OF BACTERIOLOGY, 1980, 142 (03) :747-754
[9]  
BECKER GW, 1977, J BIOL CHEM, V252, P8684
[10]   A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator [J].
Bird, AJ ;
Zhao, H ;
Luo, H ;
Jensen, LT ;
Srinivasan, C ;
Evans-Galea, M ;
Winge, DR ;
Eide, DJ .
EMBO JOURNAL, 2000, 19 (14) :3704-3713