Combining biological networks to predict genetic interactions

被引:168
作者
Wong, SL
Zhang, LV
Tong, AHY
Li, ZJ
Goldberg, DS
King, OD
Lesage, G
Vidal, M
Andrews, B
Bussey, H
Boone, C
Roth, FP
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[3] Univ Toronto, Dept Med Genet & Microbiol, Toronto, ON M5G 1L6, Canada
[4] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
关键词
D O I
10.1073/pnas.0406614101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic interactions define overlapping functions and compensatory pathways. In particular, synthetic sick or lethal (SSL) genetic interactions are important for understanding how an organism tolerates random mutation, i.e., genetic robustness. Comprehensive identification of SSL relationships remains far from complete in any organism, because mapping these networks is highly labor intensive. The ability to predict SSL interactions, however, could efficiently guide further SSL discovery. Toward this end, we predicted pairs of SSL genes in Saccharomyces cerevisiae by using probabilistic decision trees to integrate multiple types of data, including localization, mRNA expression, physical interaction, protein function, and characteristics of network topology. Experimental evidence demonstrated the reliability of this strategy, which, when extended to human SSL interactions, may prove valuable in discovering drug targets for cancer therapy and in identifying genes responsible for multigenic diseases.
引用
收藏
页码:15682 / 15687
页数:6
相关论文
共 45 条
[1]   Yeast 1,3-β-glucan synthase activity is inhibited by phytosphingosine localized to the endoplasmic reticulum [J].
Abe, M ;
Nishida, I ;
Minemura, M ;
Qadota, H ;
Seyama, Y ;
Watanabe, T ;
Ohya, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :26923-26930
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Gene expression during the life cycle of Drosophila melanogaster [J].
Arbeitman, MN ;
Furlong, EEM ;
Imam, F ;
Johnson, E ;
Null, BH ;
Baker, BS ;
Krasnow, MA ;
Scott, MP ;
Davis, RW ;
White, KP .
SCIENCE, 2002, 297 (5590) :2270-2275
[4]   Beyond Mendel: An evolving view of human genetic disease transmission [J].
Badano, JL ;
Katsanis, N .
NATURE REVIEWS GENETICS, 2002, 3 (10) :779-789
[5]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[6]  
Breiman L., 1998, CLASSIFICATION REGRE
[7]   Systematic genome-wide screens of gene function [J].
Carpenter, AE ;
Sabatini, DM .
NATURE REVIEWS GENETICS, 2004, 5 (01) :11-22
[8]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[9]  
CONSORTIUM TGO, 2001, GENOME RES, V11, P1425
[10]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79