Statistics of extinction and survival in Lotka-Volterra systems

被引:30
作者
Abramson, G
Zanette, DH
机构
[1] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 Bariloche, Rio Negro, Argentina
[2] Int Ctr Theoret Phys, I-34100 Trieste, Italy
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.4572
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze purely competitive many-species Lotka-Volterra systems with random interaction matrices, focusing the attention on statistical properties of their asymptotic states. Generic features of the evolution are outlined from a semiquantitative analysis of the phase-space structure and extensive numerical simulations are performed to study the statistics of the extinctions. We find that the number of surviving species depends strongly on the statistical properties of the interaction matrix and that the probability of survival is weakly correlated to specific initial conditions.
引用
收藏
页码:4572 / 4577
页数:6
相关论文
共 15 条
[1]   BOLTZMANN AND DARWIN STRATEGIES IN COMPLEX OPTIMIZATION [J].
BOSENIUK, T ;
EBELING, W ;
ENGEL, A .
PHYSICS LETTERS A, 1987, 125 (6-7) :307-310
[2]   SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES [J].
EIGEN, M .
NATURWISSENSCHAFTEN, 1971, 58 (10) :465-+
[3]   REQUIREMENTS FOR EVOLVABILITY IN COMPLEX-SYSTEMS - ORDERLY DYNAMICS AND FROZEN COMPONENTS [J].
KAUFFMAN, SA .
PHYSICA D, 1990, 42 (1-3) :135-152
[4]   COEVOLUTION TO THE EDGE OF CHAOS - COUPLED FITNESS LANDSCAPES, POISED STATES, AND COEVOLUTIONARY AVALANCHES [J].
KAUFFMAN, SA ;
JOHNSEN, S .
JOURNAL OF THEORETICAL BIOLOGY, 1991, 149 (04) :467-505
[5]  
May R. M., 1974, STABILITY COMPLEXITY
[6]   WILL A LARGE COMPLEX SYSTEM BE STABLE [J].
MAY, RM .
NATURE, 1972, 238 (5364) :413-&
[7]   ATTRACTIVE SEPARATRIX LOOPS IN CONNECTIONIST MODELS [J].
MIKHAILOV, AS ;
POTERYAIKO, IY .
PHYSICA D, 1991, 53 (01) :13-24
[8]  
MIKHAILOV AS, 1990, FDN SYNERGETICS, V1, pCH7
[9]  
Murray J. D., 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4
[10]   ANALYTICAL SOLUTION OF COUPLED NON-LINEAR RATE-EQUATIONS .2. KINETICS OF POSITIVE CATALYTIC FEEDBACK LOOPS [J].
PHILLIPSON, PE ;
SCHUSTER, P .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (08) :3807-3818