Three-dimensional front tracking

被引:269
作者
Glimm, J [1 ]
Grove, JW
Li, XL
Shyue, KM
Zeng, YN
Zhang, Q
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
[3] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
关键词
front tracking; Riemann problems; nonmanifold geometry;
D O I
10.1137/S1064827595293600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a three-dimensional front tracking algorithm, discuss its numerical implementation, and present studies to validate the correctness of this approach. Based on the results of the two-dimensional computations, we expect three-dimensional front tracking to significantly improve computational efficiencies for problems dominated by discontinuities. In some cases, for which the interface computations display considerable numerical sensitivity, we expect a greatly enhanced capability.
引用
收藏
页码:703 / 727
页数:25
相关论文
共 61 条
[1]  
Aho A. V., 1983, DATA STRUCTURE ALGOR
[2]  
BELL JB, 1991, AIAA 10 COMP FLUID D
[3]  
BOSTON B, 1995, THESIS STATE U NEW Y
[4]  
BOSTON B, 1997, STUD ADV MATH, V3, P1
[5]  
BOSTON B, 1995, MAT CONT, V8, P39
[6]  
BOSTON B, 1995, SHOCK WAVES MARSEILL, V4, P217
[7]  
BOSTON D, 1993, P 11 ARM C APPL MATH
[8]   COMPETITION BETWEEN CURVATURE AND CHEMISTRY IN A SPHERICALLY EXPANDING DETONATION [J].
BUKIET, B ;
JONES, J .
APPLIED PHYSICS LETTERS, 1988, 52 (22) :1921-1923
[9]   ON FRONT-TRACKING METHODS APPLIED TO HYPERBOLIC SYSTEMS OF NONLINEAR CONSERVATION-LAWS [J].
CHARRIER, P ;
TESSIERAS, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) :461-472
[10]   A RENORMALIZATION-GROUP SCALING ANALYSIS FOR COMPRESSIBLE 2-PHASE FLOW [J].
CHEN, YP ;
DENG, YF ;
GLIMM, J ;
LI, G ;
ZHANG, Q ;
SHARP, DH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (11) :2929-2937