The development of light-emitting dendrimers for displays

被引:449
作者
Burn, Paul L.
Lo, Shih-Chun
Samuel, Ifor D. W.
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
[2] Univ St Andrews, Sch Phys & Astron, SUPA, Org Semiconductor Res, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
10.1002/adma.200601592
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dendrimers are now an important class of light-emitting material for use in organic light-emitting diodes (OLEDs). Dendrimers are branched macromolecules that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. The first light-emitting dendrimers were fluorescent but more recently highly efficient phosphorescent dendrimers have been developed. OLEDs containing light-emitting dendrimers have been reported to have external quantum efficiencies of up to 16%. The solubility of the dendrimers opens the way for simple processing and a new class of flat-panel displays. In this Review we show how the structure of the light-emitting dendrimers controls key features such as intermolecular interactions and charge transport, which are important for all OLED materials. The advantages of the dendrimer architecture for phosphorescent emitters and the way the structure can be varied to enhance materials performance and device design are illustrated.
引用
收藏
页码:1675 / 1688
页数:14
相关论文
共 88 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :904-906
[3]   Light-harvesting dendrimers [J].
Adronov, A ;
Fréchet, JMJ .
CHEMICAL COMMUNICATIONS, 2000, (18) :1701-1710
[4]   Solution-processable red phosphorescent dendrimers for light-emitting device applications [J].
Anthopoulos, TD ;
Frampton, MJ ;
Namdas, EB ;
Burn, PL ;
Samuel, IDW .
ADVANCED MATERIALS, 2004, 16 (06) :557-+
[5]   Influence of molecular structure on the properties of dendrimer light-emitting diodes [J].
Anthopoulos, TD ;
Markham, JPJ ;
Namdas, EB ;
Lawrence, JR ;
Samuel, IDW ;
Lo, SC ;
Burn, PL .
ORGANIC ELECTRONICS, 2003, 4 (2-3) :71-76
[6]   Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport [J].
Anthopoulos, TD ;
Markham, JPJ ;
Namdas, EB ;
Samuel, IDW ;
Lo, SC ;
Burn, PL .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4824-4826
[7]   Excitonic singlet-triplet ratio in a semiconducting organic thin film [J].
Baldo, MA ;
O'Brien, DF ;
Thompson, ME ;
Forrest, SR .
PHYSICAL REVIEW B, 1999, 60 (20) :14422-14428
[8]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[9]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[10]   Functionalised polyphenylene dendrimers and their applications [J].
Bauer, RE ;
Grimsdale, AC ;
Müllen, K .
FUNCTIONAL MOLECULAR NANOSTRUCTURES, 2005, 245 :253-286