Production of aqueous colloidal dispersions of carbon nanotubes

被引:808
作者
Jiang, LQ [1 ]
Gao, L [1 ]
Sun, J [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
关键词
carbon nanotubes; SDS; dispersion; surface chemistry; FTIR; optical microscopy;
D O I
10.1016/S0021-9797(02)00176-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable homogeneous dispersions of carbon nanotubes (CNTs) have been prepared by using sodium dodecyl sulfate (SDS) as dispersing agent. To our knowledge, it is the first report to quantitatively characterize colloidal stability of the dispersions by UV-vis spectrophometric measurements. When the sediment time reaches 500 h, the supernatant CNT concentration drops as much as 50% for the bare CNT suspension, compared to 15% with the addition of SDS. Furthermore, after 150 h, no precipitation is found for CNT/SDS dispersions, exhibiting an extreme stability. Zeta potential, auger electron microscopy, and FTIR analysis are employed to investigate the adsorption mechanism in detail. It has been concluded that the surfactant containing a single straight-chain hydrophobic segment and a terminal hydrophilic segment can modify the CNTs-suspending medium interface and prevent aggregation over long periods. The morphology of the CNT dispersions is observed with optical microscopy. An intermediate domain of homogeneously dispersed nanotubes exhibits an optimum at 0.5 wt% CNTs and 2.0 wt% SDS. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 32 条
[1]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[2]  
[Anonymous], 1993, INTRO MODERN COLLOID
[3]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[4]   Purification and size-selection of carbon nanotubes [J].
Bonard, JM ;
Stora, T ;
Salvetat, JP ;
Maier, F ;
Stockli, T ;
Duschl, C ;
Forro, L ;
deHeer, WA ;
Chatelain, A .
ADVANCED MATERIALS, 1997, 9 (10) :827-&
[5]   Nanotube nanodevice [J].
Collins, PG ;
Zettl, A ;
Bando, H ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 278 (5335) :100-103
[6]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[7]   Interactions between surfactants and particles: Dispersion, surface modification, and adsolubilization [J].
Esumi, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 241 (01) :1-17
[8]  
Fan YW, 2002, ADV MATER, V14, P130, DOI 10.1002/1521-4095(20020116)14:2<130::AID-ADMA130>3.0.CO
[9]  
2-Z
[10]   Surfactant-assisted processing of carbon nanotube/polymer composites [J].
Gong, XY ;
Liu, J ;
Baskaran, S ;
Voise, RD ;
Young, JS .
CHEMISTRY OF MATERIALS, 2000, 12 (04) :1049-1052