Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress

被引:147
作者
Qi, Z [1 ]
Spalding, EP [1 ]
机构
[1] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA
关键词
D O I
10.1104/pp.104.049213
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Physicochemical similarities between K+ and Na+ result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K+ nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K+ transport mutants akt1 (Arabidopsis K+ transporter) and skor (shaker-like K+ outward-rectifying channel). The K+-uptake ability (membrane permeability) of the sos mutant root cells measured electrophysiologically was normal in control conditions. Also, growth rates of these mutants in Na+-free media displayed wild-type K+ dependence. However, mild salt stress (50 mM NaCl) strongly inhibited root-cell K+ permeability and growth rate in K+-limiting conditions of sos1 but not wild-type plants. Increasing K+ availability partially partially rescued the sos1 growth phenotype. Therefore, it appears that in the presence of Na+, the SOS1 Na+-H+ antiporter is necessary for protecting the K+ permeability on which growth depends. The hypothesis that the elevated cytoplasmic Na+ levels predicted to result from loss of SOS1 function impaired the K+ permeability was tested by introducing 10 mm NaCl into the cytoplasm of a patch-clamped wild-type root cell. Complete loss of AKT1 K+ channel activity ensued. AKT1 is apparently a target of salt stress in sos1 plants, resulting in poor growth due to impaired K+ uptake. Complementary studies showed that akt1 seedlings were salt sensitive during early seedling development, but skor seedlings were normal. Thus, the effect of Na+ on K+ transport is probably more important at the uptake stage than at the xylem loading stage.
引用
收藏
页码:2548 / 2555
页数:8
相关论文
共 45 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[3]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[4]   Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance [J].
Berthomieu, P ;
Conéjéro, G ;
Nublat, A ;
Brackenbury, WJ ;
Lambert, C ;
Savio, C ;
Uozumi, N ;
Oiki, S ;
Yamada, K ;
Cellier, F ;
Gosti, F ;
Simonneau, T ;
Essah, PA ;
Tester, M ;
Véry, AA ;
Sentenac, H ;
Casse, F .
EMBO JOURNAL, 2003, 22 (09) :2004-2014
[5]   Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance [J].
Carden, DE ;
Walker, DJ ;
Flowers, TJ ;
Miller, AJ .
PLANT PHYSIOLOGY, 2003, 131 (02) :676-683
[6]   An anion channel in Arabidopsis hypocotyls activated by blue light [J].
Cho, MH ;
Spalding, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8134-8138
[7]   Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+-/H+ exchangers [J].
Darley, CP ;
van Wuytswinkel, OCM ;
van der Woude, K ;
Mager, WH ;
de Boer, AH .
BIOCHEMICAL JOURNAL, 2000, 351 :241-249
[8]   Nonselective cation channels in plants [J].
Demidchik, V ;
Davenport, RJ ;
Tester, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :67-107
[9]  
Dennison KL, 2001, PLANT PHYSIOL, V127, P1012, DOI 10.1104/pp.010193
[10]   Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana [J].
Ding, L ;
Zhu, JK .
PLANT PHYSIOLOGY, 1997, 113 (03) :795-799