The Binet-Cauchy theorem for the hyperdeterminant of boundary format multi-dimensional matrices

被引:3
作者
Dionisi, C
Ottaviani, G
机构
[1] Dipartimento Matemat Applicata G Sansone, I-50139 Florence, Italy
[2] Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
D O I
10.1016/S0021-8693(02)00537-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B be multi-dimensional matrices of boundary format Pi(i=0)(p)(k(i) + 1), Pi(j=0)(q()l(j) + 1), respectively. Assume that k(p) = I-0 so that the convolution A * B is defined. We prove that Det(A * B) =Det(A)(alpha) (.) Det(B)(beta) where alpha = l(0)!/(l(1)!...l(q)!), beta = (k(0) + l)!/(k(l)!...k(p-1)!(k(p) + 1)!), and Det is the hyperdeterminant. When A, B are square matrices. this formula is the usual Binet-Cauchy Theorem computing the determinant of the product A (.) B. It follows that A * B is nondegenerate if and only if A and B are both nondegenerate. We show by a counterexample that the assumption of boundary format cannot be dropped. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 8 条
[1]   Unstable hyperplanes for Steiner bundles and multidimensional matrices [J].
Ancona, Vincenzo ;
Ottaviani, Giorgio .
ADVANCES IN GEOMETRY, 2001, 1 (02) :165-192
[2]  
Cayley A., 1845, CAMBRIDGE MATH J, V4, P1
[3]  
COSTA L, IN PRESS T AM MATH S
[4]  
DIONISI C, 2000, THESIS U NAPOLI
[5]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[6]   HYPERDETERMINANTS [J].
GELFAND, IM ;
KAPRANOV, MM ;
ZELEVINSKY, AV .
ADVANCES IN MATHEMATICS, 1992, 96 (02) :226-263
[7]  
Hirzebruch F., 1966, TOPOLOGICAL METHODS
[8]   Singularities of hyperdeterminants [J].
Weyman, J ;
Zelevinsky, A .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (03) :591-&