Dearth of glutamate transporters contributes to striatal excitotoxicity

被引:30
作者
Brustovetsky, T [1 ]
Purl, K [1 ]
Young, A [1 ]
Shimizu, K [1 ]
Dubinsky, JM [1 ]
机构
[1] Univ Minnesota, Dept Neurosci, Minneapolis, MN 55455 USA
关键词
EAAC1; GLT1; GLAST; glutamate transporters; neurodegeneration; Huntington's disease; anionic liposomes; selective vulnerability;
D O I
10.1016/j.expneurol.2004.03.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Since excitotoxicity is hypothesized to contribute to cell death in Huntington's disease (HD), we examined the susceptibility of striatal and hippocampal neurons to glutamate-induced cell death. Striatal cultures were more susceptible to glutamate-triggered toxicity than sister hippocampal cultures. Dose-response curves were equivalent when secondary toxicity was blocked with application of the NMDA receptor antagonist, MK801, or enhanced with the pan-specific glutamate transport blocker, TBOA, following excitotoxin removal. TBOA failed to alter the dose-response characteristics of striatal excitotoxicity, ruling out reverse operation of glutamate transporters. Striatal cultures expressed less EAAC1 and less membrane-associated EAAC1, GLT1, and GLAST than hippocampal cultures. Antisense down-regulation of EAAC1 increased the sensitivity of hippocampal cultures to glutamate, indicating that this transporter can act as an important neuroprotectant. Thus, the relative expression levels of glutamate transporters, even in parts of the brain where they are considered adequately expressed, appear to influence the sensitivities of different neuronal populations to excitotoxicity. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:222 / 230
页数:9
相关论文
共 66 条
[1]   ABNORMALITIES OF STRIATAL PROJECTION NEURONS AND N-METHYL-D-ASPARTATE RECEPTORS IN PRESYMPTOMATIC HUNTINGTONS-DISEASE [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB ;
HANDELIN, B ;
BALFOUR, R ;
ANDERSON, KD ;
MARKEL, DS ;
TOURTELLOTTE, WW ;
REINER, A .
NEW ENGLAND JOURNAL OF MEDICINE, 1990, 322 (18) :1293-1298
[2]   REPLICATION OF THE NEUROCHEMICAL CHARACTERISTICS OF HUNTINGTONS-DISEASE BY QUINOLINIC ACID [J].
BEAL, MF ;
KOWALL, NW ;
ELLISON, DW ;
MAZUREK, MF ;
SWARTZ, KJ ;
MARTIN, JB .
NATURE, 1986, 321 (6066) :168-171
[3]   Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation [J].
Behrens, P. F. ;
Franz, P. ;
Woodman, B. ;
Lindenberg, K. S. ;
Landwehrmeyer, G. B. .
BRAIN, 2002, 125 :1908-1922
[4]   Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization [J].
Berger, UV ;
Hediger, MA .
ANATOMY AND EMBRYOLOGY, 1998, 198 (01) :13-30
[5]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[6]   The glutamate transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate indirectly evokes NMDA receptor mediated neurotoxicity in rat cortical cultures [J].
Blitzblau, R ;
Gupta, S ;
Djali, S ;
Robinson, MB ;
Rosenberg, PA .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1996, 8 (09) :1840-1852
[7]   AGE-DEPENDENT VULNERABILITY OF THE STRIATUM TO THE MITOCHONDRIAL TOXIN 3-NITROPROPIONIC ACID [J].
BROUILLET, E ;
JENKINS, BG ;
HYMAN, BT ;
FERRANTE, RJ ;
KOWALL, NW ;
SRIVASTAVA, R ;
ROY, DS ;
ROSEN, BR ;
BEAL, MF .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (01) :356-359
[8]   On the mechanisms of neuroprotection by creatine and phosphocreatine [J].
Brustovetsky, N ;
Brustovetsky, T ;
Dubinsky, JM .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (02) :425-434
[9]  
Centonze D, 2000, FUNCT NEUROL, V15, P253
[10]   Subtype-specific enhancement of NMDA receptor currents by mutant Huntingtin [J].
Chen, NS ;
Luo, T ;
Wellington, C ;
Metzler, M ;
McCutcheon, K ;
Hayden, MR ;
Raymond, LA .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (05) :1890-1898