In silico characterisation and chromosomal localisation of human RRH (peropsin) implications for opsin evolution -: art. no. 3

被引:35
作者
Bellingham, J
Wells, DJ
Foster, RG
机构
[1] Charing Cross Hosp, Imperial Coll London, Fac Med,Div Neurosci & Psychol Med, Dept Neuromuscular Dis,Gene Targeting Unit, London W6 8RP, England
[2] Charing Cross Hosp, Imperial Coll London, Fac Med,Div Neurosci & Psychol Med, Dept Integrat & Mol Neurosci, London W6 8RP, England
关键词
D O I
10.1186/1471-2164-4-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The vertebrate opsins are proteins which utilise a retinaldehyde chromophore in their photosensory or photoisomerase roles in the visual/irradiance detection cycle. The majority of the opsins, such as rod and cone opsins, have a very highly conserved gene structure suggesting a common lineage. Exceptions to this are RGR-opsin and melanopsin, whose genes have very different intron insertion positions. The gene structure of another opsin, peropsin ( retinal pigment epithelium-derived rhodopsin homologue, RRH) is unknown. Results: By in silico analysis of the GenBank database we have determined that the human RRH comprises 7 exons spanning approximately 16.5 kb and is localised to chromosome 4q25 in the following gene sequence: cen-EGF-RRH-IF-qter- a position that excludes this gene as a candidate for the RP29 autosomal recessive retinitis pigmentosa locus. A comparison of opsin gene structures reveals that RRH and RGR share two common intron (introns 1 and 4) insertion positions which may reflect a shared ancestral gene. Conclusion: The opsins comprise a diverse group of genes which appear to have arisen from three different lineages. These lineages comprise the "classical opsin superfamily" which includes the rod and cone opsins, pinopsin, VA-opsin, parapinopsin and encephalopsin; the RRH and RGR group; and the melanopsin line. A common lineage for RRH and RGR, together with their sites of expression in the RPE, indicates that peropsin may act as a retinal isomerase.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position [J].
Bellingham, J ;
Whitmore, D ;
Philp, AR ;
Wells, DJ ;
Foster, RG .
MOLECULAR BRAIN RESEARCH, 2002, 107 (02) :128-136
[3]   Opsins and mammalian photoentrainment [J].
Bellingham, J ;
Foster, RG .
CELL AND TISSUE RESEARCH, 2002, 309 (01) :57-71
[4]   Characterisation of the ultraviolet-sensitive opsin gene in the honey bee, Apis mellifera [J].
Bellingham, J ;
Wilkie, SE ;
Morris, AG ;
Bowmaker, JK ;
Hunt, DM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 243 (03) :775-781
[5]   Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets.: Critical differences during human and mouse eye development. [J].
Bibb, LC ;
Holt, JKL ;
Tarttelin, EE ;
Hodges, MD ;
Gregory-Evans, K ;
Rutherford, A ;
Lucas, RJ ;
Sowden, JC ;
Gregory-Evans, CY .
HUMAN MOLECULAR GENETICS, 2001, 10 (15) :1571-1579
[6]  
Blackshaw S, 1997, J NEUROSCI, V17, P8074
[7]  
Blackshaw S, 1997, J NEUROSCI, V17, P8083
[8]  
Blackshaw S, 1999, J NEUROSCI, V19, P3681
[9]   Activation, deactivation, and adaptation in vertebrate, photoreceptor cells [J].
Burns, ME ;
Baylor, DA .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :779-805
[10]   A photic visual cycle of rhodopsin regeneration is dependent on Rgr [J].
Chen, P ;
Hao, WS ;
Rife, L ;
Wang, XP ;
Shen, DW ;
Chen, J ;
Ogden, T ;
Van Boemel, GB ;
Wu, LY ;
Yang, M ;
Fong, HKW .
NATURE GENETICS, 2001, 28 (03) :256-260