Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage

被引:187
作者
Niu, Simiao [1 ]
Liu, Ying [1 ]
Zhou, Yu Sheng [1 ]
Wang, Sihong [1 ]
Lin, Long [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100089, Peoples R China
关键词
Capacitor; charging characteristics; mechanical energy harvesting; triboelectric nanogenerator (TENG); CONTACT ELECTRIFICATION; ELECTROMAGNETIC GENERATOR; MOTION; ELECTRETS; SURFACE;
D O I
10.1109/TED.2014.2377728
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Triboelectric nanogenerator (TENG) technology has emerged as a new mechanical energy harvesting technology with numerous advantages. This paper analyzes its charging behavior together with a load capacitor. Through numerical and analytical modeling, the charging performance of a TENG with a bridge rectifier under periodic external mechanical motion is completely analogous to that of a dc voltage source in series with an internal resistance. An optimum load capacitance that matches the TENGs impedance is observed for the maximum stored energy. This optimum load capacitance is theoretically detected to be linearly proportional to the charging cycle numbers and the inherent TENG capacitance. Experiments were also performed to further validate our theoretical anticipation and show the potential application of this paper in guiding real experimental designs.
引用
收藏
页码:641 / 647
页数:7
相关论文
共 21 条
[1]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[2]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[3]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[4]   CONTACT ELECTRIFICATION INDUCED BY MONOLAYER MODIFICATION OF A SURFACE AND RELATION TO ACID-BASE INTERACTIONS [J].
HORN, RG ;
SMITH, DT ;
GRABBE, A .
NATURE, 1993, 366 (6454) :442-443
[5]   ELECTROSTATIC CURRENT GENERATOR HAVING A DISK ELECTRET AS AN ACTIVE ELEMENT [J].
JEFIMENKO, OD ;
WALKER, DK .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1978, 14 (06) :537-540
[6]   Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies-State of the Art [J].
Khaligh, Alireza ;
Zeng, Peng ;
Zheng, Cong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (03) :850-860
[7]   Transparent Flexible Graphene Triboelectric Nanogenerators [J].
Kim, Seongsu ;
Gupta, Manoj Kumar ;
Lee, Keun Young ;
Sohn, Ahrum ;
Kim, Tae Yun ;
Shin, Kyung-Sik ;
Kim, Dohwan ;
Kim, Sung Kyun ;
Lee, Kang Hyuck ;
Shin, Hyeon-Jin ;
Kim, Dong-Wook ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2014, 26 (23) :3918-3925
[8]   Parylene-based electret power generators [J].
Lo, Hsi-wen ;
Tai, Yu-Chong .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (10)
[9]   Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets [J].
McCarty, Logan S. ;
Whitesides, George M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (12) :2188-2207
[10]   MEMS electrostatic micropower generator for low frequency operation [J].
Mitcheson, PD ;
Miao, P ;
Stark, BH ;
Yeatman, EM ;
Holmes, AS ;
Green, TC .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 115 (2-3) :523-529