Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4

被引:131
作者
Youn, HD
Grozinger, CM
Liu, JO
机构
[1] MIT, Dept Chem & Biol, Canc Res Ctr, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1074/jbc.C000304200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The myocyte enhancer factor 2 (MEF2) consists of a family of transcription factors that play important roles in a number of physiological processes from muscle cell differentiation to neuronal survival and T cell apoptosis. MEF2 has been reported to be associated with several distinct repressors including Cabin1(cain), MEF2-interacting transcriptional repressor (MITR), and HDAC4. It has been previously shown that Cabin1 is associated with MEF2 in a calcium-sensitive manner; activated calmodulin binds to Cabin1 and releases it from MEF2. However, it was not known whether the binding of HDAC4 and MITR to MEF2 is also regulated by calcium. We report that HDAC4 and MITR contain calmodulin-binding domains that overlap with their MEF2-binding domains. Binding of calmodulin to HDAC4 leads to its dissociation from MEF2, relieving MEF2 from the transcriptional repression by HDAC4. Together, HDAC4, MITE, and Cabin1 constitute a family of calcium-sensitive transcriptional repressors of MEF2.
引用
收藏
页码:22563 / 22567
页数:5
相关论文
共 40 条
  • [1] Histone deacetylases: transcriptional repression with SINers and NuRDs
    Ayer, DE
    [J]. TRENDS IN CELL BIOLOGY, 1999, 9 (05) : 193 - 198
  • [2] The CBP co-activator is a histone acetyltransferase
    Bannister, AJ
    Kouzarides, T
    [J]. NATURE, 1996, 384 (6610) : 641 - 643
  • [3] Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
    Black, BL
    Olson, EN
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 : 167 - 196
  • [4] Retinoblastoma protein recruits histone deacetylase to repress transcription
    Brehm, A
    Miska, EA
    McCance, DJ
    Reid, JL
    Bannister, AJ
    Kouzarides, T
    [J]. NATURE, 1998, 391 (6667) : 597 - 601
  • [5] Characterization of a human RPD3 ortholog, HDAC3
    Emiliani, S
    Fischle, W
    Van Lint, C
    Al-Abed, Y
    Verdin, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) : 2795 - 2800
  • [6] A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p
    Fischle, W
    Emiliani, S
    Hendzel, MJ
    Nagase, T
    Nomura, N
    Voelter, W
    Verdin, E
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (17) : 11713 - 11720
  • [7] Three proteins define a class of human histone deacetylases related to yeast Hda1p
    Grozinger, CM
    Hassig, CA
    Schreiber, SL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) : 4868 - 4873
  • [8] Histone acetylation in chromatin structure and transcription
    Grunstein, M
    [J]. NATURE, 1997, 389 (6649) : 349 - 352
  • [9] Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation
    Han, J
    Jiang, Y
    Li, Z
    Kravchenko, VV
    Ulevitch, RJ
    [J]. NATURE, 1997, 386 (6622) : 296 - 299
  • [10] HAN TH, 1995, MOL CELL BIOL, V15, P2907