Akt-1 expression level regulates CNS precursors

被引:101
作者
Sinor, AD
Lillien, L
机构
[1] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Sch Med, Pittsburgh Canc Inst, Pittsburgh, PA 15261 USA
关键词
mTOR; p21(Cip1); rapamycin; FGF2; EGF; cortex;
D O I
10.1523/JNEUROSCI.1470-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although most cells in the embryonic mouse cortex express the serine-threonine kinase Akt-1, a small population of progenitors expresses Akt-1 protein at a higher level. To determine the functional significance of this difference, we used a retrovirus to increase Akt-1 expression in cortical progenitors. Increased Akt expression enhanced Akt activation after growth factor stimulation of progenitors. In vivo, it promoted retention in progenitor layers, the ventricular zone and subventricular zone. In vitro, it enhanced proliferation and survival, but did not impair migration. Moreover, it increased the proportion of stem cells, defined by a self-renewal assay. These effects did not depend on the Akt substrate p21(Cip1). In contrast, rapamycin, an inhibitor of mTOR ( mammalian target of rapamycin), altered effects of elevated Akt-1 selectively: it eliminated the increase in stem cells and reduced the proliferative response, but had no effect on survival. The ability of elevated Akt-1 to increase the self-renewing population therefore depends on a rapamycin-sensitive mechanism ( presumably inhibition of mTOR activity) but not on p21( Cip1), and can be distinguished from its effects on the proliferation and survival of other types of progenitors. Our findings suggest that expression of a high level of Akt-1 by a subpopulation of cortical progenitors biases their responses to extrinsic signals to increase their survival, proliferation, and/or self-renewal. Heterogeneity in Akt-1 level among progenitors could therefore allow cells that share a microenvironment to respond differently to the same extrinsic signals.
引用
收藏
页码:8531 / 8541
页数:11
相关论文
共 60 条
[1]   Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase [J].
Alessi, DR ;
Caudwell, FB ;
Andjelkovic, M ;
Hemmings, BA ;
Cohen, P .
FEBS LETTERS, 1996, 399 (03) :333-338
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2 [J].
Arsenijevic, Y ;
Weiss, S ;
Schneider, B ;
Aebischer, P .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7194-7202
[4]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[5]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex [J].
Burrows, RC ;
Wancio, D ;
Levitt, P ;
Lillien, L .
NEURON, 1997, 19 (02) :251-267
[8]   LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal [J].
Capela, A ;
Temple, S .
NEURON, 2002, 35 (05) :865-875
[9]  
Caric D, 2001, DEVELOPMENT, V128, P4203
[10]  
Chaudhary LR, 2001, J CELL BIOCHEM, V81, P304, DOI 10.1002/1097-4644(20010501)81:2<304::AID-JCB1045>3.3.CO