Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin

被引:251
作者
Münzberg, H
Huo, LH
Nillni, EA
Hollenberg, AN
Bjorbæk, C
机构
[1] Beth Israel Deaconess Med Ctr, Div Endocrinol, Dept Med, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA 02215 USA
[3] Brown Univ, Rhode Isl Hosp, Sch Med, Dept Med,Div Endocrinol, Providence, RI 02903 USA
关键词
D O I
10.1210/en.2002-221037
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Leptin acts on the brain to regulate body weight and neuroendocrine function. Proopiomelanocortin (POMC) neurons in the hypothalamus are important targets of leptin. These cells express the leptin receptor ObRb, and leptin can regulate POMC mRNA levels, but the cellular mechanisms by which this occurs is unknown. Here we show evidence that leptin stimulates pomc gene transcription via activation of intracellular signal transducer and activator of transcription 3 (STAT3) proteins. In pomc-promoter assays using transfected cells, leptin induces pomc promoter activity. Expression of dominant negative STAT3 strongly suppresses this effect. Furthermore, maximal activation requires the presence of the STAT3-binding site, tyrosine 1138, of ObRb. Mutational analysis identifies a 30-bp promoter element that is required for regulation by leptin. In rats, robust leptin-dependent induction of STAT3 phosphorylation is demonstrated in hypothalamic POMC neurons using double immunohistochemistry. In total, approximately 37% of POMC cells are positive for phospho-STAT3 after leptin treatment. Furthermore, leptin-responsive POMC neurons are concentrated in the rostral region of the hypothalamus. Combined, our data show that a subpopulation of POMC neurons is leptin-responsive and suggest that stimulation of hypothalamic pomc gene expression in these cells requires STAT3 activation. We speculate that STAT3 is critical for leptin-dependent effects on energy homeostasis that are mediated by the central melanocortin system.
引用
收藏
页码:2121 / 2131
页数:11
相关论文
共 72 条
[1]  
Bagnol D, 1999, J NEUROSCI, V19
[2]   Activation of downstream signals by the long form of the leptin receptor [J].
Banks, AS ;
Davis, SM ;
Bates, SH ;
Myers, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (19) :14563-14572
[3]   Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus [J].
Baskin, DG ;
Breininger, JF ;
Schwartz, MW .
DIABETES, 1999, 48 (04) :828-833
[4]   Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus [J].
Baskin, DG ;
Schwartz, MW ;
Seeley, RJ ;
Woods, SC ;
Porte, D ;
Breininger, JF ;
Jonak, Z ;
Schaefer, J ;
Krouse, M ;
Burghardt, C ;
Campfield, LA ;
Burn, P ;
Kochan, JP .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1999, 47 (03) :353-362
[5]   STAT3 signalling is required for leptin regulation of energy balance but not reproduction [J].
Bates, SH ;
Stearns, WH ;
Dundon, TA ;
Schubert, M ;
Tso, AWK ;
Wang, YP ;
Banks, AS ;
Lavery, HJ ;
Haq, AK ;
Maratos-Flier, E ;
Neel, BG ;
Schwartz, MW ;
Myers, MG .
NATURE, 2003, 421 (6925) :856-859
[6]   The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors [J].
Baumann, H ;
Morella, KK ;
White, DW ;
Dembski, M ;
Bailon, PS ;
Kim, HK ;
Lai, CF ;
Tartaglia, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8374-8378
[7]   Divergent signaling capacities of the long and short isoforms of the leptin receptor [J].
Bjorbaek, C ;
Uotani, S ;
da Silva, B ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32686-32695
[8]   SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985 [J].
Bjorbæk, C ;
Lavery, HJ ;
Bates, SH ;
Olson, RK ;
Davis, SM ;
Flier, JS ;
Myers, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :40649-40657
[9]   Divergent roles of SHP-2 in ERK activation by leptin receptors [J].
Bjorbæk, C ;
Buchholz, RM ;
Davis, SM ;
Bates, SH ;
Pierroz, DD ;
Gu, H ;
Neel, BG ;
Myers, MG ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :4747-4755
[10]  
BJORKHOLM JE, 1998, INTEL TECHNOL J Q, V3, P1