Ruin theory with stochastic return on investments

被引:153
作者
Paulsen, J [1 ]
Gjessing, HK
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Haukeland Hosp, AHH, Div Med Stat, N-5021 Bergen, Norway
关键词
ruin theory; stochastic differential equation; integro-differential equation; weak convergence;
D O I
10.2307/1427849
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a risk process with stochastic interest rate, and show that the probability of eventual ruin and the Laplace transform of the time of ruin can be found by solving certain boundary value problems involving integro-differential equations. These equations are then solved for a number of special cases. We also show that a sequence of such processes converges weakly towards a diffusion process, and analyze the above-mentioned ruin quantities for the limit process in some detail.
引用
收藏
页码:965 / 985
页数:21
相关论文
共 18 条
[1]  
Bateman H., 1954, Tables of Integral Transforms, V2
[2]  
Burkill J. C., 1975, THEORY ORDINARY DIFF, V3rd
[3]  
DASSIOS A, 1989, COMM STATIST STOCHAS, V5, P181
[4]   CLASSICAL RISK THEORY IN AN ECONOMIC-ENVIRONMENT [J].
DELBAEN, F ;
HAEZENDONCK, J .
INSURANCE MATHEMATICS & ECONOMICS, 1987, 6 (02) :85-116
[5]   RUIN ESTIMATION FOR A GENERAL INSURANCE RISK MODEL [J].
EMBRECHTS, P ;
SCHMIDLI, H .
ADVANCES IN APPLIED PROBABILITY, 1994, 26 (02) :404-422
[6]   EXPONENTIAL INEQUALITIES FOR RUIN PROBABILITIES OF RISK PROCESSES PERTURBED BY DIFFUSION [J].
FURRER, HJ ;
SCHMIDLI, H .
INSURANCE MATHEMATICS & ECONOMICS, 1994, 15 (01) :23-36
[7]  
Gerber, 1979, INTRO MATH RISK THEO
[8]  
GERBER HU, 1973, MITT VEREIN SCHWEIZ, V73, P205
[9]  
Harrison J.M., 1977, STOCHASTIC PROCESS A, V5, P67, DOI [10.1016/0304-4149(77)90051-5, DOI 10.1016/0304-4149(77)90051-5]
[10]  
INCE IL, 1956, ORDINARY DIFFERENTIA