Application of PTR-MS fro measurements of biogenic VOC in a deciduous forest

被引:58
作者
Ammann, C
Spirig, C
Neftel, A
Steinbacher, M
Komenda, M
Schaub, A
机构
[1] Air Pollut & Climate Res Grp, Agroscope FAL Reckenholz, CH-8046 Zurich, Switzerland
[2] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[3] ICG II Troposphere, Res Ctr, Inst Chem & Dynam Geosphere, Julich, Germany
关键词
proton-transfer-reaction mass spectrometry; PTR-MS; volatile organic compounds; biosphere-atmosphere exchange; deciduous forest;
D O I
10.1016/j.ijms.2004.08.012
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The Vegetation-atmosphere-exchange is an important process controlling the atmospheric concentration of various volatile organic compounds (VOCs) that play a major role in atmospheric chemistry. However, the quantification of VOC exchange on the ecosystem scale is still an analytical challenge. In the present study we tested and applied a proton-transfer-reaction mass spectrometry system (PTR-MS) for the measurement of biogenic VOCs in a mixed deciduous forest, VOC concentrations were from the raw instrument signals based on physical principles. This method allows a consistent quantification also of compounds for which regular calibration with a gas standard is not available. It requires a regular and careful investigation of the mass-dependent ion detection characteristics of the PTR-MS, which otherwise could become a considerable error source. The PTR-MS method was tested in the laboratory for a range of oxygenated and non-oxygenated VOCs using a permeation source. the agreement was within 16% or better, which is well within the expected uncertainty. During the field measurement campaign in a deciduous forest stand, an on-line intercomparison with a state-of-the-art gas-chromatography system showed a generally good agreement. However, the relatively low ambient VOC concentrations revealed some systematic difference for acetone and isoprene, that may indicate an error in the determination of the PTR-MS offset or an interference of an unidentified isobaric compound on the detected ion mass. With the presentation of selected field results, we demonstrate the ability of the PTR-MS system to measure continuous vertical concentration profiles of biogenic VOCs throughout a forest canopy at a time resolution of 20 min. The resulting datasets provide valuable information for the study of the interactions between emission, photochemical transformation and transport processes within and above the forest canopy. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 31 条
[1]   Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive [J].
Apel, EC ;
Riemer, DD ;
Hills, A ;
Baugh, W ;
Orlando, J ;
Faloona, I ;
Tan, D ;
Brune, W ;
Lamb, B ;
Westberg, H ;
Carroll, MA ;
Thornberry, T ;
Geron, CD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D3)
[2]   Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry [J].
de Gouw, J ;
Warneke, C ;
Karl, T ;
Eerdekens, G ;
van der Veen, C ;
Fall, R .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2003, 223 (1-3) :365-382
[3]   Proton-transfer chemical-ionization mass spectrometry allows real-time analysis of volatile organic compounds released from cutting and drying of crops [J].
De Gouw, JA ;
Howard, CJ ;
Custer, TG ;
Baker, BM ;
Fall, R .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (12) :2640-2648
[4]  
Fuentes JD, 2000, B AM METEOROL SOC, V81, P1537, DOI 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO
[5]  
2
[6]   The production of methanol by flowering plants and the global cycle of methanol [J].
Galbally, IE ;
Kirstine, W .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2002, 43 (03) :195-229
[7]   ISOPRENE AND MONOTERPENE EMISSION RATE VARIABILITY - MODEL EVALUATIONS AND SENSITIVITY ANALYSES [J].
GUENTHER, AB ;
ZIMMERMAN, PR ;
HARLEY, PC ;
MONSON, RK ;
FALL, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D7) :12609-12617
[8]   PROTON-TRANSFER REACTION MASS-SPECTROMETRY - ONLINE TRACE GAS-ANALYSIS AT THE PPB LEVEL [J].
HANSEL, A ;
JORDAN, A ;
HOLZINGER, R ;
PRAZELLER, P ;
VOGEL, W ;
LINDINGER, W .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 1995, 149 :609-619
[9]  
Jacob D. J., 2002, J GEOPHYS RES, P107, DOI DOI 10.1029/2001JD000694
[10]   Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry [J].
Karl, TG ;
Spirig, C ;
Rinne, J ;
Stroud, C ;
Prevost, P ;
Greenberg, J ;
Fall, R ;
Guenther, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2002, 2 :279-291