Numerical evaluation of eigenvalues of the sheet diffusion problem in the surface/diffusion mixed regime

被引:33
作者
den Otter, MW [1 ]
van der Haar, LM [1 ]
Bouwmeester, HJM [1 ]
机构
[1] Univ Twente, Dept Chem Technol, Lab Inorgan Mat Sci, NL-7500 AE Enschede, Netherlands
关键词
conductivity relaxation; diffusion; mathematical modelling; Newman theory; surface emission;
D O I
10.1016/S0167-2738(00)00684-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
in relaxation experiments where both bulk diffusion and surface processes are rate controlling, the theoretical transient depends on the roots beta (n) of the transcendental equation beta (n) tan beta (n) = L, in which L contains the surface rate constant, the diffusion constant and sample dimensions. A method is presented to numerically evaluate the roots beta (n) to high precision, which is necessary in the evaluation of the surface and bulk transport parameters through curve fitting. The method is simple, fast and accurate. It is demonstrated that large errors in these parameters can occur if the roots are not evaluated to high precision. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 21 条
[1]   A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS [J].
BOUKAMP, BA .
SOLID STATE IONICS, 1986, 20 (01) :31-44
[2]  
Carslaw H, 1959, CONDUCTION HEAT SOLI, V2nd, P18
[3]  
CARSLAW HS, 1959, CONDUCTION HEAT SOLI, P49
[4]  
CARSLAW HS, 1959, CONDUCTION HEAT SOLI, P120
[5]  
CARSLAW HS, 1959, CONDUCTION HEAT SOLI, P34
[6]  
CHEN Y, 1995, WOOD FIBER SCI, V27, P178
[7]  
CRANK J, 1979, MATH DIFFUSION, P25
[8]  
CRANK J, 1979, MATH DIFFUSION, P17
[9]  
CRANK J, 1979, MATH DIFFUSION, P379
[10]  
Crank J., 1979, MATH DIFFUSION, P60