Pathobiology of visceral pain: Molecular mechanisms and therapeutic implications v. Central nervous system processing of somatic and visceral sensory signals

被引:26
作者
Ladabaum, U
Minoshima, S
Owyang, C [1 ]
机构
[1] Univ Michigan, Dept Med, Div Gastroenterol, Ann Arbor, MI 48109 USA
[2] Univ Calif San Francisco, Dept Med, Div Gastroenterol, San Francisco, CA 94143 USA
[3] Univ Michigan, Dept Med, Div Nucl Med, Ann Arbor, MI 48109 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY | 2000年 / 279卷 / 01期
关键词
positron emission tomography; functional magnetic resonance imaging; pain; brain; perception;
D O I
10.1152/ajpgi.2000.279.1.G1
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Somatic and visceral sensation, including pain perception, can be studied noninvasively in humans with functional brain imaging techniques. Positron emission tomography and functional magnetic resonance imaging have identified a series of cerebral regions involved in the processing of somatic pain, including the anterior cingulate, insular, prefrontal, inferior parietal, primary and secondary somatosensory, and primary motor and premotor cortices, the thalamus, hypothalamus, brain stem, and cerebellum. Experimental evidence supports possible specific roles for individual structures in processing the various dimensions of pain, such as encoding of affect in the anterior cingulate cortex. Visceral sensation has been examined in the setting of myocardial ischemia, distension of hollow viscera, and esophageal acidification. Although knowledge regarding somatic sensation is more extensive than the information available for visceral sensation, important similarities have emerged between cerebral representations of somatic and visceral pain.
引用
收藏
页码:G1 / G6
页数:6
相关论文
共 26 条
[1]   Differentiating cortical areas related to pain perception from stimulus identification: Temporal analysis of fMRI activity [J].
Apkarian, AV ;
Darbar, A ;
Krauss, BR ;
Gelnar, PA ;
Szeverenyi, NM .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (06) :2956-2963
[2]   Identification of human brain loci processing esophageal sensation using positron emission tomography [J].
Aziz, Q ;
Andersson, JLR ;
Valind, S ;
Sundin, A ;
Hamdy, S ;
Jones, AKP ;
Foster, ER ;
Langstrom, B ;
Thompson, DG .
GASTROENTEROLOGY, 1997, 113 (01) :50-59
[3]  
Baciu MV, 1999, AM J NEURORADIOL, V20, P1920
[4]   Brain processing of capsaicin-induced secondary hyperalgesia - A functional MRI study [J].
Baron, R ;
Baron, Y ;
Disbrow, E ;
Roberts, TPL .
NEUROLOGY, 1999, 53 (03) :548-557
[5]   POSITRON EMISSION TOMOGRAPHIC ANALYSIS OF CEREBRAL STRUCTURES ACTIVATED SPECIFICALLY BY REPETITIVE NOXIOUS HEAT STIMULI [J].
CASEY, KL ;
MINOSHIMA, S ;
BERGER, KL ;
KOEPPE, RA ;
MORROW, TJ ;
FREY, KA .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (02) :802-807
[6]  
COGHILL RC, 1994, J NEUROSCI, V14, P4095
[7]   Functional imaging of an illusion of pain [J].
Craig, AD ;
Reiman, EM ;
Evans, A ;
Bushnell, MC .
NATURE, 1996, 384 (6606) :258-260
[8]   Functional MRI of pain- and attention-related activations in the human cingulate cortex [J].
Davis, KD ;
Taylor, SJ ;
Crawley, AP ;
Wood, ML ;
Mikulis, DJ .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (06) :3370-3380
[9]   Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex [J].
Derbyshire, SWG ;
Vogt, BA ;
Jones, AKP .
EXPERIMENTAL BRAIN RESEARCH, 1998, 118 (01) :52-60
[10]   Pain processing during three levels of noxious stimulation produces differential patterns of central activity [J].
Derbyshire, SWG ;
Jones, AKP ;
Gyulai, F ;
Clark, S ;
Townsend, D ;
Firestone, LL .
PAIN, 1997, 73 (03) :431-445