Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity

被引:22
作者
Gu, YJ
Guo, JX
Pal, A
Pan, SS
Zimniak, P
Singh, SV
Ji, XH [1 ]
机构
[1] NCI, Macromol Crystallog Lab, Frederick, MD 21702 USA
[2] Univ Pittsburgh, Sch Med, Dept Pharmacol, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Sch Med, Pittsburgh Canc Inst, Pittsburgh, PA 15260 USA
[4] Univ Arkansas Med Sci, Dept Pharmacol & Toxicol, Little Rock, AR 72205 USA
[5] Cent Arkansas Vet Healthcare Syst, Little Rock, AR 72205 USA
关键词
D O I
10.1021/bi048757g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of human class alyha glutathione (GSH) S-transferase A3-3 (hGSTA3-3) in complex with GSH was determined at 2.4 A. Despite considerable amino acid sequence identity with other human class alpha GSTs (e.g., hGSTA1-1), hGSTA3-3 is unique due to its exceptionally high steroid double bond isomerase activity for the transformation of Delta(5)-androstene-3,17-dione (Delta(5)-AD) to Delta(4)-androstene-3,17-dione. A comparative analysis of the active centers of hGSTA1-1 and hGSTA3-3 reveals that residues in positions 12 and 208 may contribute to their disparate isomerase activity toward Delta(5)-AD. Substitution of these two residues of hGSTA3-3 with the corresponding residues in hGSTA1-1 followed by kinetic characterization of the wild-type and the mutant enzymes supported this prediction. On the basis of our model of the hGSTA3-3.GSH.Delta(5)-AD, ternary complex and available biochemical data, we propose that the thiolate group of deprotonated GSH (GS(-)) serves as a base to initiate the reaction by accepting a proton from the steroid and the nonionized hydroxyl group of catalytic residue Y9 (HO-Y9) functions as part of a proton-conducting wire to transfer a proton back to the steroid. Residue R15 may function to stabilize the deprotonated thiolate group of GSH (GS(-)), and a GSH-bound water molecule may donate a hydrogen bond to the 3-keto group of Delta(5)-AD and thus help the thiolate of GS(-) to initiate the proton transfer and the subsequent stabilization of the reaction intermediate.
引用
收藏
页码:15673 / 15679
页数:7
相关论文
共 31 条
[1]   GLUTATHIONE S-TRANSFERASES - REACTION-MECHANISM, STRUCTURE, AND FUNCTION [J].
ARMSTRONG, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1991, 4 (02) :131-140
[2]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[3]  
ARMSTRONG RN, 1993, ADV ENZYMOL RAMB, V69, P1
[4]   RELATIONSHIP BETWEEN SOLUBLE GLUTATHIONE-DEPENDENT DELA-5-3-KETOSTEROID ISOMERASE AND GLUTATHIONE S-TRANSFERASES OF LIVER [J].
BENSON, AM ;
TALALAY, P ;
KEEN, JH ;
JAKOBY, WB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (01) :158-162
[5]   Crystallographic refinement by simulated annealing: Methods and applications [J].
Brunger, AT ;
Rice, LM .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :243-269
[6]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[7]   STRUCTURAL-ANALYSIS OF HUMAN ALPHA-CLASS GLUTATHIONE TRANSFERASE A1-1 IN THE APO-FORM AND IN COMPLEXES WITH ETHACRYNIC-ACID AND ITS GLUTATHIONE CONJUGATE [J].
CAMERON, AD ;
SINNING, I ;
LHERMITE, G ;
OLIN, B ;
BOARD, PG ;
MANNERVIK, B ;
JONES, TA .
STRUCTURE, 1995, 3 (07) :717-727
[8]   X-RAY CRYSTAL-STRUCTURES OF CYTOSOLIC GLUTATHIONE S-TRANSFERASES - IMPLICATIONS FOR PROTEIN ARCHITECTURE, SUBSTRATE RECOGNITION AND CATALYTIC FUNCTION [J].
DIRR, H ;
REINEMER, P ;
HUBER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 220 (03) :645-661
[9]   Plant glutathione transferases [J].
Dixon, David P. ;
Lapthorn, Adrian ;
Edwards, Robert .
GENOME BIOLOGY, 2002, 3 (03)
[10]   ACCURATE BOND AND ANGLE PARAMETERS FOR X-RAY PROTEIN-STRUCTURE REFINEMENT [J].
ENGH, RA ;
HUBER, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :392-400