Introduction to quantum noise, measurement, and amplification

被引:1428
作者
Clerk, A. A. [1 ]
Devoret, M. H. [2 ]
Girvin, S. M. [3 ]
Marquardt, Florian [4 ,5 ]
Schoelkopf, R. J. [2 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[4] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany
[5] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-ELECTRON TRANSISTOR; INTERFERENCE DEVICE; CHARGE SENSITIVITY; OSCILLATOR; AMPLIFIER; MOTION; LIMIT; FLUCTUATIONS; UNCERTAINTY; DETECTORS;
D O I
10.1103/RevModPhys.82.1155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and atomic, molecular, optical-quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, the basics of weak continuous measurements are described. Particular attention is given to the treatment of the standard quantum limit on linear amplifiers and position detectors within a general linear-response framework. This approach is shown how it relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics and its application to the case of electrical circuits is illustrated, including mesoscopic detectors and resonant cavity detectors.
引用
收藏
页码:1155 / 1208
页数:54
相关论文
共 148 条
[1]   Radio-frequency single-electron transistor as readout device for qubits: Charge sensitivity and backaction [J].
Aassime, A ;
Johansson, G ;
Wendin, G ;
Schoelkopf, RJ ;
Delsing, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3376-3379
[2]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[3]   Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors [J].
Aguado, R ;
Kouwenhoven, LP .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :1986-1989
[4]   Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The ''Which Path?'' interferometer [J].
Aleiner, IL ;
Wingreen, NS ;
Meir, Y .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3740-3743
[5]   Quantum measurement as a driven phase transition: An exactly solvable model [J].
Allahverdyan, AE ;
Balian, R ;
Nieuwenhuizen, TM .
PHYSICAL REVIEW A, 2001, 64 (03) :27
[6]  
[Anonymous], 1984, Quantum theory and measurement
[7]  
[Anonymous], 1996, Statistical mechanics
[8]  
[Anonymous], 2009, Physics, DOI DOI 10.1103/PHYSICS.2.40
[9]  
[Anonymous], 1992, Quantum Measurement
[10]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74