High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

被引:177
作者
Varga, E
Klinke, HB
Réczey, K
Thomsen, AB
机构
[1] Riso Natl Lab, Plant Res Dept, DK-4000 Roskilde, Denmark
[2] Budapest Univ Technol & Econ, Dept Agr Chem Technol, H-1521 Budapest, Hungary
关键词
simultaneous saccharification and fermentation (SSF); corn stover; ethanol fermentation; high solid concentration;
D O I
10.1002/bit.20222
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degreesC, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degreesC. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:567 / 574
页数:8
相关论文
共 45 条
[1]   Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii [J].
Ahring, BK ;
Licht, D ;
Schmidt, AS ;
Sommer, P ;
Thomsen, AB .
BIORESOURCE TECHNOLOGY, 1999, 68 (01) :3-9
[2]   Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw [J].
Alfani, F ;
Gallifuoco, A ;
Saporosi, A ;
Spera, A ;
Cantarella, M .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2000, 25 (04) :184-192
[3]   The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol [J].
Alkasrawi, M ;
Eriksson, T ;
Börjesson, J ;
Wingren, A ;
Galbe, M ;
Tjerneld, F ;
Zacchi, G .
ENZYME AND MICROBIAL TECHNOLOGY, 2003, 33 (01) :71-78
[4]   MECHANISM OF ENZYMATIC CELLULOSE DEGRADATION - ISOLATION AND SOME PROPERTIES OF A BETA-GLUCOSIDASE FROM TRICHODERMA-VIRIDE [J].
BERGHEM, LER ;
PETTERSSON, LG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1974, 46 (02) :295-305
[5]   THERMAL-DECOMPOSITION OF DILUTE AQUEOUS FORMIC-ACID SOLUTIONS [J].
BJERRE, AB ;
SORENSEN, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1992, 31 (06) :1574-1577
[6]  
Bjerre AB, 1996, BIOTECHNOL BIOENG, V49, P568, DOI 10.1002/(SICI)1097-0290(19960305)49:5<568::AID-BIT10>3.3.CO
[7]  
2-4
[8]   Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol [J].
Bollók, M ;
Réczey, K ;
Zacchi, G .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :69-80
[9]   MEASUREMENT OF CELLULASE ACTIVITIES [J].
GHOSE, TK .
PURE AND APPLIED CHEMISTRY, 1987, 59 (02) :257-268
[10]  
Goering H. K., 1970, FORAGE FIBER ANALYSE