DNA familial binding profiles made easy: Comparison of various motif alignment and clustering strategies

被引:92
作者
Mahony, Shaun [1 ]
Auron, Philip E.
Benos, Panayiotis V.
机构
[1] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Fac Arts & Sci, Dept Comp Sci, Pittsburgh, PA USA
[3] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA
[4] Univ Pittsburgh, Sch Med, Dept Mol Genet & Biochem, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Human Genet, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Sch Med, Inst Canc, Pittsburgh, PA 15261 USA
关键词
D O I
10.1371/journal.pcbi.0030061
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated ( a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study of transcriptional regulation, and the work presented here will form the basis for tool and method development for future transcriptional modeling studies.
引用
收藏
页码:578 / 591
页数:14
相关论文
共 44 条
  • [1] Computational detection of cis-regulatory modules
    Aerts, Stein
    Van Loo, Peter
    Thijs, Gert
    Moreau, Yves
    De Moor, Bart
    [J]. BIOINFORMATICS, 2003, 19 : II5 - II14
  • [2] Auron PE, 2005, MEASURING IMMUNITY: BASIC BIOLOGY AND CLINICAL ASSESSMENT, P91, DOI 10.1016/B978-012455900-4/50269-5
  • [3] A STRATEGY FOR THE RAPID MULTIPLE ALIGNMENT OF PROTEIN SEQUENCES - CONFIDENCE LEVELS FROM TERTIARY STRUCTURE COMPARISONS
    BARTON, GJ
    STERNBERG, MJE
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (02) : 327 - 337
  • [4] Benos P V, 2001, Pac Symp Biocomput, P115
  • [5] Additivity in protein-DNA interactions: how good an approximation is it?
    Benos, PV
    Bulyk, ML
    Stormo, GD
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (20) : 4442 - 4451
  • [6] Probabilistic code for DNA recognition by proteins of the EGR family
    Benos, PV
    Lapedes, AS
    Stormo, GD
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (04) : 701 - 727
  • [7] Calinski T., 1974, COMMUN STAT, V3, P1, DOI DOI 10.1080/03610927408827101
  • [8] Matlnspector and beyond: promoter analysis based on transcription factor binding sites
    Cartharius, K
    Frech, K
    Grote, K
    Klocke, B
    Haltmeier, M
    Klingenhoff, A
    Frisch, M
    Bayerlein, M
    Werner, T
    [J]. BIOINFORMATICS, 2005, 21 (13) : 2933 - 2942
  • [9] Footer:: A quantitative comparative genomics method for efficient recognition of cis-regulatory elements
    Corcoran, DL
    Feingold, E
    Dominick, J
    Wright, M
    Harnaha, J
    Trucco, M
    Giannoukakis, N
    Benos, PV
    [J]. GENOME RESEARCH, 2005, 15 (06) : 840 - 847
  • [10] CLUSTER SEPARATION MEASURE
    DAVIES, DL
    BOULDIN, DW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) : 224 - 227