A probabilistic method to identify compensatory substitutions for pathogenic mutations

被引:1
作者
Easton, B. C. [1 ]
Isaev, A. V. [1 ]
Huttley, G. A. [2 ]
Maxwell, P. [2 ]
机构
[1] Australian Natl Univ, Dept Math, Math Sci Inst, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, John Curtin Sch Med Res, Computat Genom Lab, Canberra, ACT 0200, Australia
来源
PROCEEDINGS OF THE 5TH ASIA- PACIFIC BIOINFOMATICS CONFERENCE 2007 | 2007年 / 5卷
关键词
D O I
10.1142/9781860947995_0022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex systems of interactions govern, the structure and function of biomolecules. Mutations that substantially disrupt these interactions are deleterious and should not persist under selection. Yet, several instances have been reported where a variant confirmed as pathogenic in one species is fixed in the orthologs of other species. Here we introduce a novel method for detecting compensatory substitutions for these so-called compensated pathogenic deviations (CPDs), incorporating knowledge of pathogenic variants into a probabilistic method for detecting correlated evolution. The success of this approach is demonstrated for 26 of 31 CPDs observed in mitochondrial transfer RNAs and for one in beta hemoglobin. The detection of multiple compensatory sites is demonstrated for two of these CPDs. The methodology is applicable to comparative sequence data for biomolecules expressed in any alphabet, real or abstract. It provides a widely applicable approach to the prediction of compensatory substitutions for CPDs, avoiding any reliance on rigid non-probabilistic criteria or structural data. The detection of compensatory substitutions that facilitate the substitution of otherwise pathogenic variants offers valuable insight into the molecular constraints imposed on adaptive evolution.
引用
收藏
页码:195 / +
页数:3
相关论文
共 42 条
[1]   Phylogenetically enhanced statistical tools for RNA structure prediction [J].
Akmaev, VR ;
Kelley, ST ;
Stormo, GD .
BIOINFORMATICS, 2000, 16 (06) :501-512
[2]   Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials [J].
Amrine-Madsen, H ;
Scally, M ;
Westerman, M ;
Stanhope, MJ ;
Krajewski, C ;
Springer, MS .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2003, 28 (02) :186-196
[3]   Asymmetry - Where evolutionary and developmental genetics meet [J].
Batterham, P ;
Davies, AG ;
Game, AY ;
McKenzie, JA .
BIOESSAYS, 1996, 18 (10) :841-845
[4]   Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) [J].
Bininda-Emonds, ORP ;
Gittleman, JL ;
Purvis, A .
BIOLOGICAL REVIEWS, 1999, 74 (02) :143-175
[5]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[6]   Virulence of antibiotic-resistant Salmonella typhimurium [J].
Björkman, J ;
Hughes, D ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3949-3953
[7]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[8]   Resistance of human immunodeficiency virus type 1 to protease inhibitors: Selection of resistance mutations in the presence and absence of the drug [J].
Borman, AM ;
Paulous, S ;
Clavel, F .
JOURNAL OF GENERAL VIROLOGY, 1996, 77 :419-426
[9]  
Brandon MC, 2005, NUCLEIC ACIDS RES, V33, pD611
[10]   PyEvolve: a toolkit for statistical modelling of molecular evolution [J].
Butterfield, A ;
Vedagiri, V ;
Lang, E ;
Lawrence, C ;
Wakefield, MJ ;
Isaev, A ;
Huttley, GA .
BMC BIOINFORMATICS, 2004, 5 (1)